Skip to main content
Top
Published in:

01-02-2025

Neural network implementation for smart medical systems with double-gate MOSFET

Authors: Epiphany Jebamalar Leavline, Krishnasamy Vijayakanth

Published in: Journal of Computational Electronics | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The implementation of a neural network on very large-scale integrated (VLSI) circuits provides flexibility in programmable systems. However, conventional field-programmable gate array (FPGA) neural chips suffer from longer computation times, higher costs, and greater energy consumption. On the other hand, multilayer perceptron (MLP) network implementation over VLSI exhibits increased speed with a smaller chip size and reduced cost. This work aims to implement an MLP neural network using double-gate metal oxide semiconductor field effect transistors (DGMOSFETs) functioning as neurons. The suggested network architecture is offered as a package utilizing very high-speed integrated circuit hardware description language (VHDL). The weights of the MLP are obtained by training a neural network with electrocardiogram (ECG) signals taken from the PhysioNet database. The ECG input signals, obtained weights and bias, are given to the designed MLP for testing. The classification accuracy of this trained neural network is 94.48%. A power analysis is also conducted for the hardware-designed MLP to validate the power reduction performance. In terms of speed, the required number of components and power, the performance of this design employing DGMOSFET outperforms its single-gate MOSFET (SGMOSFET) counterpart.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hemanth, J., Fernando, X., Lafata, P. et al.: International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI), vol. 26. Springer (2018). Hemanth, J., Fernando, X., Lafata, P. et al.: International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI), vol. 26. Springer (2018).
2.
go back to reference Soda, K.J., Pack, D.J.: “Simple hardware implementation of neural networks for instruction” Analogue Electronics, Article ID 59467683, (2004). Soda, K.J., Pack, D.J.: “Simple hardware implementation of neural networks for instruction” Analogue Electronics, Article ID 59467683, (2004).
3.
go back to reference Li, H., Wang, X., Ding, S.: Research and development of neural network ensembles: a survey. Artif. Intell. Rev. 49(4), 455–479 (2018)CrossRefMATH Li, H., Wang, X., Ding, S.: Research and development of neural network ensembles: a survey. Artif. Intell. Rev. 49(4), 455–479 (2018)CrossRefMATH
4.
go back to reference Faiedh, H., Hamdi, S., Bouguezzi, S., et al.: Architectural exploration of multilayer perceptron models for on-chip and real-time road sign classification. Proc. Inst. Mech. Eng. J. Syst. Control Eng. 232(6), 772–783 (2018)MATH Faiedh, H., Hamdi, S., Bouguezzi, S., et al.: Architectural exploration of multilayer perceptron models for on-chip and real-time road sign classification. Proc. Inst. Mech. Eng. J. Syst. Control Eng. 232(6), 772–783 (2018)MATH
5.
go back to reference Borundiya, A.P.: Implementation of hopfield neural network using double gate MOSFET. Doctoral dissertation, Ohio University, pp. 1–95 (2008) Borundiya, A.P.: Implementation of hopfield neural network using double gate MOSFET. Doctoral dissertation, Ohio University, pp. 1–95 (2008)
6.
go back to reference Sharma, L.D., Sunkaria, R.K.: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal Image Video Process. 12(7), 199–206 (2018)CrossRefMATH Sharma, L.D., Sunkaria, R.K.: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal Image Video Process. 12(7), 199–206 (2018)CrossRefMATH
7.
go back to reference Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(3), 279–289 (2012)CrossRefMATH Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(3), 279–289 (2012)CrossRefMATH
8.
go back to reference Safdarian, N., Dabanloo, N.J., Attarodi, G.: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal. J. Biomed. Sci. Eng. 7(10), 818–824 (2014)CrossRef Safdarian, N., Dabanloo, N.J., Attarodi, G.: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal. J. Biomed. Sci. Eng. 7(10), 818–824 (2014)CrossRef
9.
go back to reference Sun, L., Lu, Y., Yang, K.: ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)CrossRefMATH Sun, L., Lu, Y., Yang, K.: ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)CrossRefMATH
10.
go back to reference Song, H., Rajan, D. et al.: Attend and diagnose: clinical time series analysis using attention models. In: Thirty-Second AAAI Conference on Artificial Intelligence, vol. 501, pp. 4091–4098 (2018) Song, H., Rajan, D. et al.: Attend and diagnose: clinical time series analysis using attention models. In: Thirty-Second AAAI Conference on Artificial Intelligence, vol. 501, pp. 4091–4098 (2018)
11.
go back to reference Farabet, C., Martini, B., Corda, B. et al.: Neu flow: a runtime reconfigurable dataflow processor for vision. In: CVPR Workshops, pp. 109–116 (2011). Farabet, C., Martini, B., Corda, B. et al.: Neu flow: a runtime reconfigurable dataflow processor for vision. In: CVPR Workshops, pp. 109–116 (2011).
12.
go back to reference Zhang, C., Li, P., Cong, J. et al.: Optimizing FPGA-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161–170 (2015). Zhang, C., Li, P., Cong, J. et al.: Optimizing FPGA-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161–170 (2015).
13.
go back to reference Qiu, J., Wang, J., Yao, S. et al.: Going deeper with embedded FPGA platform for convolutional neural network. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 26–35 (2016). Qiu, J., Wang, J., Yao, S. et al.: Going deeper with embedded FPGA platform for convolutional neural network. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 26–35 (2016).
14.
go back to reference Lee, C.Y., Gallagher, P.W., Tu, Z.: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 863–875 (2018)CrossRefMATH Lee, C.Y., Gallagher, P.W., Tu, Z.: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 863–875 (2018)CrossRefMATH
15.
go back to reference Ullah, A., Ahmad, J., et al.: Action recognition in video sequences using deep bidirectional LSTM with CNN features. IEEE Access 6, 1155–2116 (2017)CrossRefMATH Ullah, A., Ahmad, J., et al.: Action recognition in video sequences using deep bidirectional LSTM with CNN features. IEEE Access 6, 1155–2116 (2017)CrossRefMATH
16.
go back to reference Oh, S.L., Ng, E.Y.K., Acharya, U.R., et al.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med.. Biol. Med. 102(11), 278–287 (2018)CrossRefMATH Oh, S.L., Ng, E.Y.K., Acharya, U.R., et al.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med.. Biol. Med. 102(11), 278–287 (2018)CrossRefMATH
17.
go back to reference Palangi, H., Ward, R., et al.: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 24(4), 694–707 (2016)CrossRefMATH Palangi, H., Ward, R., et al.: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 24(4), 694–707 (2016)CrossRefMATH
18.
go back to reference Abdullah, L.A., Al-Ani, M.S.: CNN-LSTM based model for ECG arrhythmias and myocardial infarction classification. Adv. Sci. Technol. Eng. Syst. J. 5(5), 601–606 (2020)CrossRefMATH Abdullah, L.A., Al-Ani, M.S.: CNN-LSTM based model for ECG arrhythmias and myocardial infarction classification. Adv. Sci. Technol. Eng. Syst. J. 5(5), 601–606 (2020)CrossRefMATH
19.
go back to reference Indiveri, G.: Computation in neuromorphic analogue VLSI systems. In: Neural Nets WIRN Vietri, pp. 3–20. Springer (2002) Indiveri, G.: Computation in neuromorphic analogue VLSI systems. In: Neural Nets WIRN Vietri, pp. 3–20. Springer (2002)
20.
go back to reference Ye, Y., Wenbo, M.: Digital modulation classification using multilayer perceptron and time-frequency features. J. Syst. Eng. Electron. 18(2), 249–254 (2007)CrossRefMATH Ye, Y., Wenbo, M.: Digital modulation classification using multilayer perceptron and time-frequency features. J. Syst. Eng. Electron. 18(2), 249–254 (2007)CrossRefMATH
21.
go back to reference Odinaka, I., Lai, P., Kaplan, A.D., O’Sullivan, J.A., Sirevaag, E.J., Rohrbaugh, J.W.: ECG biometric recognition: a comparative analysis. IEEE Trans. Inf. Forensics Secur. 7(6), 1812–1824 (2012)CrossRef Odinaka, I., Lai, P., Kaplan, A.D., O’Sullivan, J.A., Sirevaag, E.J., Rohrbaugh, J.W.: ECG biometric recognition: a comparative analysis. IEEE Trans. Inf. Forensics Secur. 7(6), 1812–1824 (2012)CrossRef
27.
go back to reference Al Mahmud, F., Islam, M.M., Maruf, M.H.: Comparative study on single gate MOSFET and double gate MOSFET. Appl. Res. J. 3(2), 80–86 (2017)MATH Al Mahmud, F., Islam, M.M., Maruf, M.H.: Comparative study on single gate MOSFET and double gate MOSFET. Appl. Res. J. 3(2), 80–86 (2017)MATH
28.
go back to reference Momeni, A., Han, J., Montuschi, P., Lombardi, F.: Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRefMATH Momeni, A., Han, J., Montuschi, P., Lombardi, F.: Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRefMATH
29.
go back to reference Venkatachalam, S., Ko, S.-B.: Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2016) Venkatachalam, S., Ko, S.-B.: Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2016)
Metadata
Title
Neural network implementation for smart medical systems with double-gate MOSFET
Authors
Epiphany Jebamalar Leavline
Krishnasamy Vijayakanth
Publication date
01-02-2025
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2025
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02246-6