Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Neural Network Modeling of Transonic Buffet on the NASA Common Research Model

Authors : Rebecca Zahn, Tim Linke, Christian Breitsamter

Published in: New Results in Numerical and Experimental Fluid Mechanics XIII

Publisher: Springer International Publishing

Abstract

The application of reduced-order modeling (ROM) techniques in the context of aerodynamic nonlinear system identification of realistic aircraft configurations gained increasing attention in recent years. Therefore, in the present study the application of a recurrent neuro-fuzzy model (NFM) that is serial connected with a multilayer perceptron (MLP) neural network is introduced concerning the computation of transonic buffet aerodynamics. In particular, the intention of the ROM is the prediction of coefficient time-series trends in contrast to a precise resolution of detailed flow effects. Further, a reduction of computational time compared to a full-order reference Computational Fluid Dynamics (CFD) solution is pursued. The training of the ROM is accomplished based on a data set computed by means of unsteady Reynolds-averaged Navier-Stokes (URANS) simulations. The performance of the trained ROM is demonstrated by predicting the buffet flow characteristics of the NASA Common Research Model (CRM) investigated at transonic flow conditions. Therefore, the wing of the configuration is excited by an external pitching motion beyond buffet onset. By comparing the ROM result with a reference URANS solution, a precise prediction capability of the aerodynamic characteristics as well as a reduction in computational time is demonstrated.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Timme, S.: Global instability of wing shock-buffet onset. J. Fluid Mech. 885 (2020) Timme, S.: Global instability of wing shock-buffet onset. J. Fluid Mech. 885 (2020)
2.
go back to reference Iovnovich, M., Raveh, D.E.: Numerical study of shock buffet on three-dimensional wings. AIAA J. 53(2), 449–463 (2014) CrossRef Iovnovich, M., Raveh, D.E.: Numerical study of shock buffet on three-dimensional wings. AIAA J. 53(2), 449–463 (2014) CrossRef
3.
go back to reference Crouch, J.D., Garbaruk, A., Strelets, M.: Global instability analysis of unswept-and swept-wing transonic buffet onset. In: Fluid Dynamics Conference, AIAA-2018-3229, Atlanta, GA (2018) Crouch, J.D., Garbaruk, A., Strelets, M.: Global instability analysis of unswept-and swept-wing transonic buffet onset. In: Fluid Dynamics Conference, AIAA-2018-3229, Atlanta, GA (2018)
4.
go back to reference Koike, S., Ueno, M., Nakakita, K., Hashimoto, A.: Unsteady pressure measurements of transonic buffet on the NASA common research model. In: 34th AIAA Aplied Aerodynamic Conference, AIAA-2016-4044, Washington, D.C. (2016) Koike, S., Ueno, M., Nakakita, K., Hashimoto, A.: Unsteady pressure measurements of transonic buffet on the NASA common research model. In: 34th AIAA Aplied Aerodynamic Conference, AIAA-2016-4044, Washington, D.C. (2016)
5.
go back to reference Paladini, E., Dandois, J., Sipp, D., Robinet, J.C.: Analysis and comparison of transonic buffet phenomenon over several three-dimensional wings. AIAA J. 57(1), 1–18 (2018) Paladini, E., Dandois, J., Sipp, D., Robinet, J.C.: Analysis and comparison of transonic buffet phenomenon over several three-dimensional wings. AIAA J. 57(1), 1–18 (2018)
6.
go back to reference Sator, F., Timme, S.: Delayed detached-eddy simulation of shock-buffet on half wing-body configuration. AIAA J. 55(4), 1230–1240 (2016) CrossRef Sator, F., Timme, S.: Delayed detached-eddy simulation of shock-buffet on half wing-body configuration. AIAA J. 55(4), 1230–1240 (2016) CrossRef
7.
go back to reference Ohmichi, Y., Ishida, T., Hashimoto, A.: Modal decomposition analysis of three-dimensional transonic buffet phenomenon on a swept wing. AIAA J. 56(10), 3938–3950 (2018) CrossRef Ohmichi, Y., Ishida, T., Hashimoto, A.: Modal decomposition analysis of three-dimensional transonic buffet phenomenon on a swept wing. AIAA J. 56(10), 3938–3950 (2018) CrossRef
8.
go back to reference Candon, M., Levinski, O., Altaf, A., Carrese, R., Marzocca, P. : Aircraft transonic buffet load prediction using artificial neural networks. In: 59rd AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2019-0763, San Diego, CA (2019) Candon, M., Levinski, O., Altaf, A., Carrese, R., Marzocca, P. : Aircraft transonic buffet load prediction using artificial neural networks. In: 59rd AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2019-0763, San Diego, CA (2019)
9.
go back to reference Candon, M., et al.: On the application of a long short-term memory deep learning architecture for aircraft dynamic loads monitoring. In: 59rd AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2020-0702, Orlando, FL (2020) Candon, M., et al.: On the application of a long short-term memory deep learning architecture for aircraft dynamic loads monitoring. In: 59rd AIAA Structures, Structural Dynamics and Materials Conference, AIAA-2020-0702, Orlando, FL (2020)
10.
go back to reference Winter, M., Breitsamter, C.: Nonlinear identification via connected neural networks for unsteady aerodynamic analysis. Aerosp. Sci. Technol. 77, 802–818 (2018) CrossRef Winter, M., Breitsamter, C.: Nonlinear identification via connected neural networks for unsteady aerodynamic analysis. Aerosp. Sci. Technol. 77, 802–818 (2018) CrossRef
11.
go back to reference Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code, recent applications in research and industry. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, Netherlands (2006) Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code, recent applications in research and industry. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, Netherlands (2006)
12.
go back to reference Nelles, O.: Nonlinear System Identification - from Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin & Heidelberg, Germany (2011) Nelles, O.: Nonlinear System Identification - from Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin & Heidelberg, Germany (2011)
13.
go back to reference Winter, M., Breitsamter, C.: Reduced-order modeling of transonic buffet aerodynamics. Notes Num. Fluid Mech. 142, 511–520 (2020) Winter, M., Breitsamter, C.: Reduced-order modeling of transonic buffet aerodynamics. Notes Num. Fluid Mech. 142, 511–520 (2020)
14.
go back to reference Ehrle, M., Waldmann, A., Lutz, T., Krämer, E.: Simulation of transonic buffet with an automated zone DES approach. CEAS J. 11, 1025–1036 (2020) Ehrle, M., Waldmann, A., Lutz, T., Krämer, E.: Simulation of transonic buffet with an automated zone DES approach. CEAS J. 11, 1025–1036 (2020)
15.
go back to reference Lutz, T., Gansel, P.P.: Going for experimental and numerical unsteady wake analyses combined with wall interference assessment by using the NASA CRM-model in ETW. In: 51st AIAA Aerospace Sciences Meeting, AIAA-2013-871, Grapevine, TX (2013) Lutz, T., Gansel, P.P.: Going for experimental and numerical unsteady wake analyses combined with wall interference assessment by using the NASA CRM-model in ETW. In: 51st AIAA Aerospace Sciences Meeting, AIAA-2013-871, Grapevine, TX (2013)
Metadata
Title
Neural Network Modeling of Transonic Buffet on the NASA Common Research Model
Authors
Rebecca Zahn
Tim Linke
Christian Breitsamter
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-79561-0_66

Premium Partners