Skip to main content
Top
Published in:

04-11-2022

Neural network predictions of the high-frequency CSI300 first distant futures trading volume

Authors: Xiaojie Xu, Yun Zhang

Published in: Financial Markets and Portfolio Management | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Predictions of financial index trading volumes represent an essential issue to market participants and policy makers. We investigate this problem for the high-frequency one-minute CSI300 first distant futures trading volume from the launch of the futures index to two years after all its constituent stocks becoming shortable, a period with generally continuously expanding trading magnitude. We utilize the neural network to model this complex and irregular trading volume series and attempt to answer the following questions: can the trading volume be predicted by its own lags, and if so, how far to predict and how well; can the nearby futures or spot trading volume series help predictions, and if so, by how much; how complex does the model need to be and how robust can it be? We find that the trading volume could be predicted using one to thirty minutes ahead data through a relatively low complex model with five hidden neurons based on its own lags, resulting in generally accurate and stable performance based on the relative root mean square error. Incorporating the nearby futures or spot trading volume series generally does not help improve predictions. Results here should be of interest and use to design trading platforms, monitor system risk, and form index price predictions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
It is possible that different trading volume information might be provided by different platforms.
 
Literature
go back to reference Alvim, L., dos Santos, C.N., Milidiu, R.L.: Daily volume forecasting using high frequency predictors. In: Proceedings of the 10th IASTED International Conference, vol. 674, pp. 248 (2010) Alvim, L., dos Santos, C.N., Milidiu, R.L.: Daily volume forecasting using high frequency predictors. In: Proceedings of the 10th IASTED International Conference, vol. 674, pp. 248 (2010)
go back to reference Baghirli, O.: Comparison of Lavenberg-marquardt, scaled conjugate gradient and Bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network (2015) Baghirli, O.: Comparison of Lavenberg-marquardt, scaled conjugate gradient and Bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network (2015)
go back to reference Chen, R., Feng, Y., Palomar, D.: Forecasting intraday trading volume: a kalman filter approach, Available at SSRN 3101695 (2016) Chen, R., Feng, Y., Palomar, D.: Forecasting intraday trading volume: a kalman filter approach, Available at SSRN 3101695 (2016)
go back to reference Doan, C.D., Liong, S.-Y.: Generalization for multilayer neural network bayesian regularization or early stopping. In: Proceedings of Asia Pacific Association of Hydrology and Water Resources 2nd Conference, pp. 5–8 (2004) Doan, C.D., Liong, S.-Y.: Generalization for multilayer neural network bayesian regularization or early stopping. In: Proceedings of Asia Pacific Association of Hydrology and Water Resources 2nd Conference, pp. 5–8 (2004)
go back to reference Kano, Y., Shimizu, S. et al.: Causal inference using nonnormality. In: Proceedings of the International Symposium on Science of Modeling, The 30th Anniversary of the Information Criterion, pp. 261–270 (2003) Kano, Y., Shimizu, S. et al.: Causal inference using nonnormality. In: Proceedings of the International Symposium on Science of Modeling, The 30th Anniversary of the Information Criterion, pp. 261–270 (2003)
go back to reference Khan, T.A., Alam, M., Shahid, Z., Mazliham, M.: Comparative performance analysis of levenberg-marquardt, bayesian regularization and scaled conjugate gradient for the prediction of flash floods. J. Inf. Commun. Technol. Robot. Appl. 10, 52–58 (2019) Khan, T.A., Alam, M., Shahid, Z., Mazliham, M.: Comparative performance analysis of levenberg-marquardt, bayesian regularization and scaled conjugate gradient for the prediction of flash floods. J. Inf. Commun. Technol. Robot. Appl. 10, 52–58 (2019)
go back to reference Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)CrossRef Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)CrossRef
go back to reference Lu, T., Li, Z.: Forecasting csi 300 index using a hybrid functional link artificial neural network and particle swarm optimization with improved wavelet mutation. In: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), IEEE, pp. 241–246 (2017). https://doi.org/10.1109/ICCNEA.2017.55 Lu, T., Li, Z.: Forecasting csi 300 index using a hybrid functional link artificial neural network and particle swarm optimization with improved wavelet mutation. In: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), IEEE, pp. 241–246 (2017). https://​doi.​org/​10.​1109/​ICCNEA.​2017.​55
go back to reference Paluszek, M., Thomas, S.: Practical MATLAB Deep Learning: A Project-Based Approach. Apress (2020) Paluszek, M., Thomas, S.: Practical MATLAB Deep Learning: A Project-Based Approach. Apress (2020)
go back to reference Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., Jordan, M.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006) Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., Jordan, M.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)
go back to reference Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K.: Directlingam: a direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12, 1225–1248 (2011) Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K.: Directlingam: a direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12, 1225–1248 (2011)
go back to reference Susheng, W., Zhen, Y.: The dynamic relationship between volatility, volume and open interest in CSI 300 futures market. WSEAS Trans. Syst. 13, 1–11 (2014) Susheng, W., Zhen, Y.: The dynamic relationship between volatility, volume and open interest in CSI 300 futures market. WSEAS Trans. Syst. 13, 1–11 (2014)
go back to reference Wang, C., Chen, R.: Forecasting csi 300 volatility: the role of persistence, asymmetry, and distributional assumption in garch models. In: 2013 Sixth International Conference on Business Intelligence and Financial Engineering, IEEE, pp. 355–358 (2013). https://doi.org/10.1109/BIFE.2013.74 Wang, C., Chen, R.: Forecasting csi 300 volatility: the role of persistence, asymmetry, and distributional assumption in garch models. In: 2013 Sixth International Conference on Business Intelligence and Financial Engineering, IEEE, pp. 355–358 (2013). https://​doi.​org/​10.​1109/​BIFE.​2013.​74
go back to reference Xu, X., Zhang, Y.: Forecasting the total market value of a shares traded in the shenzhen stock exchange via the neural network, Econ. Bull. (2022) Xu, X., Zhang, Y.: Forecasting the total market value of a shares traded in the shenzhen stock exchange via the neural network, Econ. Bull. (2022)
go back to reference Xu, X., Zhang, Y.: High-frequency csi300 futures trading volume predicting through the neural network (2021) working paper Xu, X., Zhang, Y.: High-frequency csi300 futures trading volume predicting through the neural network (2021) working paper
go back to reference Xu, X.: Price discovery in us corn cash and futures markets: the role of cash market selection. In: Selected Paper Prepared for Presentation at the Agricultural & Applied Economics Association’s 2014 AAEA Annual Meeting, Minneapolis, (2014a). https://doi.org/10.22004/ag.econ.169809 Xu, X.: Price discovery in us corn cash and futures markets: the role of cash market selection. In: Selected Paper Prepared for Presentation at the Agricultural & Applied Economics Association’s 2014 AAEA Annual Meeting, Minneapolis, (2014a). https://​doi.​org/​10.​22004/​ag.​econ.​169809
go back to reference Xu, X.: Cointegration among regional corn cash prices. Econ. Bull. 35, 2581–2594 (2015) Xu, X.: Cointegration among regional corn cash prices. Econ. Bull. 35, 2581–2594 (2015)
go back to reference Xu, X.: Contemporaneous causal orderings of CSI300 and futures prices through directed acyclic graphs. Econ. Bull. 39, 2052–2077 (2019) Xu, X.: Contemporaneous causal orderings of CSI300 and futures prices through directed acyclic graphs. Econ. Bull. 39, 2052–2077 (2019)
Metadata
Title
Neural network predictions of the high-frequency CSI300 first distant futures trading volume
Authors
Xiaojie Xu
Yun Zhang
Publication date
04-11-2022
Publisher
Springer US
Published in
Financial Markets and Portfolio Management / Issue 2/2023
Print ISSN: 1934-4554
Electronic ISSN: 2373-8529
DOI
https://doi.org/10.1007/s11408-022-00421-y

Premium Partner