Skip to main content
Top
Published in: Minds and Machines 1/2018

24-02-2018

Neural Representations Observed

Authors: Eric Thomson, Gualtiero Piccinini

Published in: Minds and Machines | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The historical debate on representation in cognitive science and neuroscience construes representations as theoretical posits and discusses the degree to which we have reason to posit them. We reject the premise of that debate. We argue that experimental neuroscientists routinely observe and manipulate neural representations in their laboratory. Therefore, neural representations are as real as neurons, action potentials, or any other well-established entities in our ontology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This is not an exhaustive list. For instance, we won't discuss neural representation of space (Andersen et al. 1997; Moser et al. 2008).
 
2
Similar notions of representation are defended by Shepard and Chipman (1970), Swoyer (1991), Cummins (1996), Grush (2004), O'Brien and Opie (2004), Ryder (2004, forthcoming), Bartels (2006), Waskan (2006), Ramsey (2007), Bechtel (2008), Churchland (2012), Shagrir (2012), Isaac (2013), Hohwy (2013), Clark (2016), Morgan (2014) and Neander (2017, Chap. 8).
 
3
For a fuller treatment, see Hubel and Wiesel (2005), Rodieck (1998) and Wandell (1995).
 
4
Technically, the inequality states that if X → Y → Z is a Markov Chain, then I(X; Y) ≥ I(X; Z), where I() is mutual information. Using this to theorize about internal states of the animal assumes that the behavior of the animal in the working memory task depends on some internal state of the animal after the stimulus was presented. This is easy enough to demonstrate by removing the brain of the animal.
 
5
Note that humans beat dogs by a good order of magnitude. One study presented 10,000 pictures to passive observers in one sitting, and they were later able to recognize them with 90% accuracy (Standing 1973).
 
6
Note that ablating M1 does not always lead to permanent paresis, but more short-lived and subtle motor deficits (Schwartzman 1978). Sometimes such ablations show no notable motor deficits, but instead deficits in motor learning (Kawai et al. 2015, though see Castro 1972; Makino et al. 2017). Such results undermine simple stories in which M1 is the final common output driving all movement. Some of the most recalcitrant movement deficits such as Parkinson's disease result from damage to subcortical structures like the basal ganglia. As discussed briefly at the end of this section, motor control is distributed across multiple cortical and subcortical areas, and the focus on M1 here is a convenience meant to keep the discussion contained, not an endorsement of strict localizationist theories of M1 motor control.
 
7
Discussions of explicit/implicit coding have always taken place in the sensory system, so it is not actually clear if these are the correct standards to use for M1, which tends to send its outputs to muscles and central pattern generators (Kalaska 2009).
 
8
Note that ‘implicit’ is not the same as ‘distributed’ or ‘population’ code. ‘Implicit' implies ‘population' but not vice versa. Even in Georgopoulos' work, perhaps the locus classicus of explicit motor representations, to know the velocity of the animal's arm you must know the firing rate of the population of M1 neurons. That is, everyone in the game accepts that motor control involves a distributed code.
 
9
Sometimes these terms are used differently. For instance, ‘corollary discharge’ is sometimes taken to be the output of a forward model (see below). However, the two terms are typically used as synonyms in the literature. For instance, "A ubiquitous strategy is to route copies of movement commands to sensory structures. These signals, which are referred to as corollary discharge (CD), influence sensory processing in myriad ways" (Crapse and Sommer 2008). It would be a mistake to conclude, as (Clark 2016) does, that a paper doesn't support the existence of efference copy just because it uses the phrase 'corollary discharge'.
 
10
Why would such plasticity be useful in the electric fish? The local EM fields produced by the same EOD can change depending on changes in water resistivity, or if the animal is swimming, or spending considerable time next to a nonconducting surface such as a rock or air at the water's surface (Bell 1982), so the sensory consequences of the EOD are likely malleable enough that it is helpful to learn them (Bell 1981).
 
Literature
go back to reference Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52(6), 1106–1130.CrossRef Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52(6), 1106–1130.CrossRef
go back to reference Alexander, G. E., & Crutcher, M. D. (1990). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64(1), 133–150.CrossRef Alexander, G. E., & Crutcher, M. D. (1990). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64(1), 133–150.CrossRef
go back to reference Anscombe, E. (1957). Intention. Ithaca, NY: Cornell University Press. Anscombe, E. (1957). Intention. Ithaca, NY: Cornell University Press.
go back to reference Armstrong, D. M. (1973). Belief, truth, and knowledge. Cambridge: Cambridge University Press.CrossRef Armstrong, D. M. (1973). Belief, truth, and knowledge. Cambridge: Cambridge University Press.CrossRef
go back to reference Bastian, J. (1996). Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. Journal of Neurophysiology, 76(4), 2483–2496.CrossRef Bastian, J. (1996). Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. Journal of Neurophysiology, 76(4), 2483–2496.CrossRef
go back to reference Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative and Physiological Psychology, 90(3), 293–302.CrossRef Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative and Physiological Psychology, 90(3), 293–302.CrossRef
go back to reference Baylor, D. A. (1987). Photoreceptor signals and vision. Proctor lecture. Investigative Ophthalmology & Visual Science, 28(1), 34–49. Baylor, D. A. (1987). Photoreceptor signals and vision. Proctor lecture. Investigative Ophthalmology & Visual Science, 28(1), 34–49.
go back to reference Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. London: Routledge. Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. London: Routledge.
go back to reference Bechtel, W. (2016). Investigating neural representations: The tale of place cells. Synthese, 193(5), 1287–1321.CrossRef Bechtel, W. (2016). Investigating neural representations: The tale of place cells. Synthese, 193(5), 1287–1321.CrossRef
go back to reference Beer, R., & Williams, P. (2014). Information processing and dynamics in minimally cognitive agents. Cognitive Science, 39, 1–38.CrossRef Beer, R., & Williams, P. (2014). Information processing and dynamics in minimally cognitive agents. Cognitive Science, 39, 1–38.CrossRef
go back to reference Bell, C. C. (1981). An efference copy which is modified by reafferent input. Science, 214(4519), 450–453.CrossRef Bell, C. C. (1981). An efference copy which is modified by reafferent input. Science, 214(4519), 450–453.CrossRef
go back to reference Bell, C. C. (1982). Properties of a modifiable efference copy in an electric fish. Journal of Neurophysiology, 47(6), 1043–1056.CrossRef Bell, C. C. (1982). Properties of a modifiable efference copy in an electric fish. Journal of Neurophysiology, 47(6), 1043–1056.CrossRef
go back to reference Bialek, W., & Rieke, F. (1992). Reliability and information transmission in spiking neurons. Trends in Neurosciences, 15(11), 428–434.CrossRef Bialek, W., & Rieke, F. (1992). Reliability and information transmission in spiking neurons. Trends in Neurosciences, 15(11), 428–434.CrossRef
go back to reference Bickle, J. (2003). Philosophy and neuroscience: A Ruthlessly reductive approach. Dordrecht: Kluwer.CrossRef Bickle, J. (2003). Philosophy and neuroscience: A Ruthlessly reductive approach. Dordrecht: Kluwer.CrossRef
go back to reference Blasdel, G. G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12(8), 3139–3161. Blasdel, G. G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12(8), 3139–3161.
go back to reference Bolhuis, J. J., & Everaert, M. (2013). Birdsong, speech, and language: Exploring the evolution of mind and brain. Cambridge, MA: MIT Press. Bolhuis, J. J., & Everaert, M. (2013). Birdsong, speech, and language: Exploring the evolution of mind and brain. Cambridge, MA: MIT Press.
go back to reference Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., et al. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20(7), 987–996. https://doi.org/10.1038/nn.4568.CrossRef Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., et al. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20(7), 987–996. https://​doi.​org/​10.​1038/​nn.​4568.CrossRef
go back to reference Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509–1534.CrossRef Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509–1534.CrossRef
go back to reference Brandom, R. B. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Cambridge, MA: Harvard University Press. Brandom, R. B. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Cambridge, MA: Harvard University Press.
go back to reference Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.CrossRef Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.CrossRef
go back to reference Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, 20(4), 367–395.CrossRef Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, 20(4), 367–395.CrossRef
go back to reference Burnston, D. C. (2016b). A contextualist approach to functional localization in the brain. Biology and Philosophy, 31(4), 527–550.CrossRef Burnston, D. C. (2016b). A contextualist approach to functional localization in the brain. Biology and Philosophy, 31(4), 527–550.CrossRef
go back to reference Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145.CrossRef Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145.CrossRef
go back to reference Castro, A. J. (1972). The effects of cortical ablations on digital usage in the rat. Brain Research, 37(2), 173–185.CrossRef Castro, A. J. (1972). The effects of cortical ablations on digital usage in the rat. Brain Research, 37(2), 173–185.CrossRef
go back to reference Chang, H. (2004). Inventing temperature: Measurement and scientific progress. New York: Oxford University Press.CrossRef Chang, H. (2004). Inventing temperature: Measurement and scientific progress. New York: Oxford University Press.CrossRef
go back to reference Chang, H. T., Ruch, T. C., & Ward, A. A., Jr. (1947). Topographical representation of muscles in motor cortex of monkeys. Journal of Neurophysiology, 10(1), 39–56.CrossRef Chang, H. T., Ruch, T. C., & Ward, A. A., Jr. (1947). Topographical representation of muscles in motor cortex of monkeys. Journal of Neurophysiology, 10(1), 39–56.CrossRef
go back to reference Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.
go back to reference Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: The MIT Press. Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: The MIT Press.
go back to reference Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press. Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.
go back to reference Churchland, P. M. (2012). Plato’s camera: How the physical brain captures a landscape of abstract universals. Cambridge, MA: MIT Press. Churchland, P. M. (2012). Plato’s camera: How the physical brain captures a landscape of abstract universals. Cambridge, MA: MIT Press.
go back to reference Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.MATH Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.MATH
go back to reference Clark, A. (1993). Associative engines: Connectionism, concepts, and representational change. Cambridge, MA: MIT Press. Clark, A. (1993). Associative engines: Connectionism, concepts, and representational change. Cambridge, MA: MIT Press.
go back to reference Clark, A. (1997). The dynamical challenge. Cognitive Science, 21, 461–481.CrossRef Clark, A. (1997). The dynamical challenge. Cognitive Science, 21, 461–481.CrossRef
go back to reference Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.CrossRef Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.CrossRef
go back to reference Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431.CrossRef Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431.CrossRef
go back to reference Colombo, M. (2014). Neural representationalism, the hard problem of content and vitiated verdicts. A reply to Hutto & Myin (2013). Phenomenology and the Cognitive Sciences, 13(2), 257–274.CrossRef Colombo, M. (2014). Neural representationalism, the hard problem of content and vitiated verdicts. A reply to Hutto & Myin (2013). Phenomenology and the Cognitive Sciences, 13(2), 257–274.CrossRef
go back to reference Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.MATH Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.MATH
go back to reference Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press. Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.
go back to reference Craver, C. F. (2007). Explaining the brain. Oxford: Oxford University Press.CrossRef Craver, C. F. (2007). Explaining the brain. Oxford: Oxford University Press.CrossRef
go back to reference Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press. Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.
go back to reference Cummins, R. (1989). Meaning and mental representation. Cambridge, MA: MIT Press. Cummins, R. (1989). Meaning and mental representation. Cambridge, MA: MIT Press.
go back to reference Cummins, R. (1996). Representations, targets, and attitudes. Cambridge, MA: MIT Press. Cummins, R. (1996). Representations, targets, and attitudes. Cambridge, MA: MIT Press.
go back to reference Daniel, P. M., & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology, 159, 203–221.CrossRef Daniel, P. M., & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology, 159, 203–221.CrossRef
go back to reference DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in macaque area MT. Journal of Neuroscience, 19(4), 1398–1415. DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in macaque area MT. Journal of Neuroscience, 19(4), 1398–1415.
go back to reference Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press. Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press.
go back to reference Dennett, D. C. (1991). Consciousness explained. Boston: Little, Brown and Co. Dennett, D. C. (1991). Consciousness explained. Boston: Little, Brown and Co.
go back to reference Dow, B. M., Snyder, A. Z., Vautin, R. G., & Bauer, R. (1981). Magnification factor and receptive field size in foveal striate cortex of the monkey. Experimental Brain Research, 44(2), 213–228.CrossRef Dow, B. M., Snyder, A. Z., Vautin, R. G., & Bauer, R. (1981). Magnification factor and receptive field size in foveal striate cortex of the monkey. Experimental Brain Research, 44(2), 213–228.CrossRef
go back to reference Dowling, J. E. (2012). The retina: An approachable part of the brain (Rev. Ed. ed.). Cambridge, MA: Belknap Press of Harvard University Press. Dowling, J. E. (2012). The retina: An approachable part of the brain (Rev. Ed. ed.). Cambridge, MA: Belknap Press of Harvard University Press.
go back to reference Dretske, F. I. (1981). Knowledge & the flow of information (1st ed.). Cambridge, MA: MIT Press.MATH Dretske, F. I. (1981). Knowledge & the flow of information (1st ed.). Cambridge, MA: MIT Press.MATH
go back to reference Dretske, F. I. (1988). Explaining behavior: Reasons in a world of causes. Cambridge, MA: MIT Press. Dretske, F. I. (1988). Explaining behavior: Reasons in a world of causes. Cambridge, MA: MIT Press.
go back to reference Eliasmith, C. (2001). Attractive and in-discrete: A critique of two putative virtues of the dynamicist theory of mind. Minds and Machines, 11, 417–426.CrossRef Eliasmith, C. (2001). Attractive and in-discrete: A critique of two putative virtues of the dynamicist theory of mind. Minds and Machines, 11, 417–426.CrossRef
go back to reference Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRef Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRef
go back to reference Fetz, E. E. (1992). Are movement parameters recognizably coded in the activity of single neurons? Behavioral and Brain Sciences, 15, 679–690. Fetz, E. E. (1992). Are movement parameters recognizably coded in the activity of single neurons? Behavioral and Brain Sciences, 15, 679–690.
go back to reference Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.
go back to reference Fodor, J. A. (1981). Representations: Philosophical essays on the foundations of cognitive science. Cambridge, MA: MIT Press. Fodor, J. A. (1981). Representations: Philosophical essays on the foundations of cognitive science. Cambridge, MA: MIT Press.
go back to reference Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. Cambridge, MA: MIT Press. Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. Cambridge, MA: MIT Press.
go back to reference Fodor, J. A. (1990). A theory of content and other essays. Cambridge, MA: MIT Press. Fodor, J. A. (1990). A theory of content and other essays. Cambridge, MA: MIT Press.
go back to reference Fodor, J. A. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.CrossRef Fodor, J. A. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.CrossRef
go back to reference Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRef Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRef
go back to reference Franklin, A. (2002). Selectivity and discord: Two problems of experiment. Pittsburgh: University of Pittsburgh Press. Franklin, A. (2002). Selectivity and discord: Two problems of experiment. Pittsburgh: University of Pittsburgh Press.
go back to reference Franklin, A. (2013). Shifting standards: Experiments in particle physics in the twentieth century. Pittsburgh: University of Pittsburgh Press. Franklin, A. (2013). Shifting standards: Experiments in particle physics in the twentieth century. Pittsburgh: University of Pittsburgh Press.
go back to reference Frege, G. (1892). Über Sinn und Bedeutung. In Zeitschrift für Philosophie und philosophische Kritik (Vol. 100, pp. 25–50). Translated as ‘On Sense and Reference’ by M. Black in Translations from the Philosophical Writings of Gottlob Frege, P. Geach and M. Black (eds. and trans.), Oxford: Blackwell, third edition, 1980. Frege, G. (1892). Über Sinn und Bedeutung. In Zeitschrift für Philosophie und philosophische Kritik (Vol. 100, pp. 25–50). Translated as ‘On Sense and Reference’ by M. Black in Translations from the Philosophical Writings of Gottlob Frege, P. Geach and M. Black (eds. and trans.), Oxford: Blackwell, third edition, 1980.
go back to reference Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993a). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. Journal of Neuroscience, 13(4), 1479–1497. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993a). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. Journal of Neuroscience, 13(4), 1479–1497.
go back to reference Fuster, J. M., & Alexander, G. E. (1970). Delayed response deficit by cryogenic depression of frontal cortex. Brain Research, 20(1), 85–90.CrossRef Fuster, J. M., & Alexander, G. E. (1970). Delayed response deficit by cryogenic depression of frontal cortex. Brain Research, 20(1), 85–90.CrossRef
go back to reference Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652–654.CrossRef Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652–654.CrossRef
go back to reference Galison, P. (1987). How experiments end. Chicago: University of Chicago Press. Galison, P. (1987). How experiments end. Chicago: University of Chicago Press.
go back to reference Galison, P. (1997). Image and logic. Chicago: University of Chicago Press. Galison, P. (1997). Image and logic. Chicago: University of Chicago Press.
go back to reference Gallistel, C. R. (1990). Representations in animal cognition: An introduction. Cognition, 37(1–2), 1–22.CrossRef Gallistel, C. R. (1990). Representations in animal cognition: An introduction. Cognition, 37(1–2), 1–22.CrossRef
go back to reference Gallistel, C. R. (2008). Learning and representation. In J. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 227–242). Amsterdam: Elsevier.CrossRef Gallistel, C. R. (2008). Learning and representation. In J. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 227–242). Amsterdam: Elsevier.CrossRef
go back to reference Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Wiley.CrossRef Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Wiley.CrossRef
go back to reference Gardenfors, P. (1996). Cued and detached representations in animal cognition. Behavioral Processes, 35, 263–273.CrossRef Gardenfors, P. (1996). Cued and detached representations in animal cognition. Behavioral Processes, 35, 263–273.CrossRef
go back to reference Gardenfors, P. (2005). The detachment of thought. In C. Erneling & D. Johnson (Eds.), Mind as a scientific subject: Between brain and culture (pp. 323–341). Oxford: OUP. Gardenfors, P. (2005). The detachment of thought. In C. Erneling & D. Johnson (Eds.), Mind as a scientific subject: Between brain and culture (pp. 323–341). Oxford: OUP.
go back to reference Garzon, F. C. (2008). Towards a general theory of antirepresentationalism. The British Journal for the Philosophy of Science, 59(3), 259–292.CrossRef Garzon, F. C. (2008). Towards a general theory of antirepresentationalism. The British Journal for the Philosophy of Science, 59(3), 259–292.CrossRef
go back to reference Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2(11), 1527–1537. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2(11), 1527–1537.
go back to reference Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRef Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRef
go back to reference Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193, 559–582.CrossRef Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193, 559–582.CrossRef
go back to reference Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32(3), 337–355.CrossRef Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32(3), 337–355.CrossRef
go back to reference Godfrey-Smith, P. (1996). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.CrossRef Godfrey-Smith, P. (1996). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.CrossRef
go back to reference Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology, 35(4), 542–559.CrossRef Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology, 35(4), 542–559.CrossRef
go back to reference Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.CrossRef Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.CrossRef
go back to reference Graziano, M. S., Taylor, C. S., Moore, T., & Cooke, D. F. (2002). The cortical control of movement revisited. Neuron, 36(3), 349–362.CrossRef Graziano, M. S., Taylor, C. S., Moore, T., & Cooke, D. F. (2002). The cortical control of movement revisited. Neuron, 36(3), 349–362.CrossRef
go back to reference Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396. (discussion 396–442). Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396. (discussion 396–442).
go back to reference Hacking, I. (1983). Representing and intervening. Cambridge: Cambridge University Press.CrossRef Hacking, I. (1983). Representing and intervening. Cambridge: Cambridge University Press.CrossRef
go back to reference Horgan, S., & Tienson, J. (1992). Cognitive systems as dynamical systems. Topoi, 11, 27–43.CrossRef Horgan, S., & Tienson, J. (1992). Cognitive systems as dynamical systems. Topoi, 11, 27–43.CrossRef
go back to reference Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge, MA: MIT Press. Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge, MA: MIT Press.
go back to reference Horgan, T., & Tienson, J. (2002). The intentionality of phenomenology and the phenomenology of intentionality. In D. Chalmers (Ed.), Philosophy of mind: Classical and contemporary readings (pp. 520–933). Oxford: Oxford University Press. Horgan, T., & Tienson, J. (2002). The intentionality of phenomenology and the phenomenology of intentionality. In D. Chalmers (Ed.), Philosophy of mind: Classical and contemporary readings (pp. 520–933). Oxford: Oxford University Press.
go back to reference Horsley, V. (1907). Dr. Hughlings Jackson’s views of the functions of the cerebellum, as Illustrated by recent research. The British Medical Journal, 1(2414), 803–808.CrossRef Horsley, V. (1907). Dr. Hughlings Jackson’s views of the functions of the cerebellum, as Illustrated by recent research. The British Medical Journal, 1(2414), 803–808.CrossRef
go back to reference Horsley, V. (1909). The linacre lecture on the function of the so-called motor area of the Brain. The British Medical Journal, 2(2533), 121–132.CrossRef Horsley, V. (1909). The linacre lecture on the function of the so-called motor area of the Brain. The British Medical Journal, 2(2533), 121–132.CrossRef
go back to reference Hotton, S., & Yoshimi, J. (2010). Extending dynamical systems theory to model embodied cognition. Cognitive Science, 35, 444–479.MATHCrossRef Hotton, S., & Yoshimi, J. (2010). Extending dynamical systems theory to model embodied cognition. Cognitive Science, 35, 444–479.MATHCrossRef
go back to reference Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5(2), 95–110.CrossRef Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5(2), 95–110.CrossRef
go back to reference Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195(1), 215–243.CrossRef Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195(1), 215–243.CrossRef
go back to reference Hubel, D. H., & Wiesel, T. N. (2005). Brain and visual perception: The story of a 25-year collaboration. New York, NY: Oxford University Press. Hubel, D. H., & Wiesel, T. N. (2005). Brain and visual perception: The story of a 25-year collaboration. New York, NY: Oxford University Press.
go back to reference Hughlings Jackson, J. (1867). Remarks on the disorderly movements of chorea and convulsion, and on localisation. Medical Times and Gazette, 2, 669–670. Hughlings Jackson, J. (1867). Remarks on the disorderly movements of chorea and convulsion, and on localisation. Medical Times and Gazette, 2, 669–670.
go back to reference Hughlings Jackson, J. (1868). Notes on the physiology and pathology of the nervous system. Medical Times and Gazette, 2, 696. Hughlings Jackson, J. (1868). Notes on the physiology and pathology of the nervous system. Medical Times and Gazette, 2, 696.
go back to reference Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism. Cambridge, MA: MIT Press. Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism. Cambridge, MA: MIT Press.
go back to reference Hutto, D. D., & Myin, E. (2014). Neural representations not needed-no more pleas, please. Phenomenology and the Cognitive Sciences, 13(2), 241–256.CrossRef Hutto, D. D., & Myin, E. (2014). Neural representations not needed-no more pleas, please. Phenomenology and the Cognitive Sciences, 13(2), 241–256.CrossRef
go back to reference Isaac, A. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy, 91(4), 683–704.CrossRef Isaac, A. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy, 91(4), 683–704.CrossRef
go back to reference Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology, 7(2), 162–176. Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology, 7(2), 162–176.
go back to reference Johansson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurobiology, 2(6), 815–823.CrossRef Johansson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurobiology, 2(6), 815–823.CrossRef
go back to reference Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.CrossRef Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.CrossRef
go back to reference Kandel, E. R. (2006). In search of memory: The emergence of a new science of mind (1st ed.). New York: W. W. Norton & Company. Kandel, E. R. (2006). In search of memory: The emergence of a new science of mind (1st ed.). New York: W. W. Norton & Company.
go back to reference Kandel, E. R. (2013). Principles of neural science (5th ed.). New York: McGraw-Hill. Kandel, E. R. (2013). Principles of neural science (5th ed.). New York: McGraw-Hill.
go back to reference Keijzer, F. A. (1998). Doing without representations which specify what to do. Philosophical Psychology, 11(3), 269–302.CrossRef Keijzer, F. A. (1998). Doing without representations which specify what to do. Philosophical Psychology, 11(3), 269–302.CrossRef
go back to reference Kirsh, D. (2006). Implicit and explicit representation encyclopedia of cognitive science (pp. 1–4). New York: Wiley. Kirsh, D. (2006). Implicit and explicit representation encyclopedia of cognitive science (pp. 1–4). New York: Wiley.
go back to reference Koch, C. (2004). The quest for consciousness: A neurobiological approach. Denver, CO: Roberts and Co. Koch, C. (2004). The quest for consciousness: A neurobiological approach. Denver, CO: Roberts and Co.
go back to reference Komatsu, H., Kinoshita, M., & Murakami, I. (2000). Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual filling-in. Journal of Neuroscience, 20(24), 9310–9319. Komatsu, H., Kinoshita, M., & Murakami, I. (2000). Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual filling-in. Journal of Neuroscience, 20(24), 9310–9319.
go back to reference Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z Tierpsychol, 22(7), 770–783. Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z Tierpsychol, 22(7), 770–783.
go back to reference Kriegel, U. (Ed.). (2013). Phenomenal intentionality. Oxford: Oxford University Press. Kriegel, U. (Ed.). (2013). Phenomenal intentionality. Oxford: Oxford University Press.
go back to reference Lacquaniti, F., Borghese, N. A., & Carrozzo, M. (1992). Internal models of limb geometry in the control of hand compliance. Journal of Neuroscience, 12(5), 1750–1762. Lacquaniti, F., Borghese, N. A., & Carrozzo, M. (1992). Internal models of limb geometry in the control of hand compliance. Journal of Neuroscience, 12(5), 1750–1762.
go back to reference Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–535.CrossRef Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–535.CrossRef
go back to reference Lewis, J. E., & Kristan, W. B., Jr. (1998b). Representation of touch location by a population of leech sensory neurons. Journal of Neurophysiology, 80(5), 2584–2592.CrossRef Lewis, J. E., & Kristan, W. B., Jr. (1998b). Representation of touch location by a population of leech sensory neurons. Journal of Neurophysiology, 80(5), 2584–2592.CrossRef
go back to reference Li, C. S., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron, 30(2), 593–607.CrossRef Li, C. S., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron, 30(2), 593–607.CrossRef
go back to reference Lloyd, D. G., & Besier, T. F. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36(6), 765–776.CrossRef Lloyd, D. G., & Besier, T. F. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36(6), 765–776.CrossRef
go back to reference Loar, B. (2003). Phenomenal intentionality as the basis of mental content. In M. Hahn & B. Ramberg (Eds.), Reflections and replies: Essays on the philosophy of Tyler Burge (pp. 229–258). Cambridge, MA: MIT Press. Loar, B. (2003). Phenomenal intentionality as the basis of mental content. In M. Hahn & B. Ramberg (Eds.), Reflections and replies: Essays on the philosophy of Tyler Burge (pp. 229–258). Cambridge, MA: MIT Press.
go back to reference Mandik, P. (2003). Varieties of representation in evolved and embodied neural networks. Biology and Philosophy, 18, 95–130.CrossRef Mandik, P. (2003). Varieties of representation in evolved and embodied neural networks. Biology and Philosophy, 18, 95–130.CrossRef
go back to reference Mangel, S. C. (1991). Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology, 442, 211–234.CrossRef Mangel, S. C. (1991). Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology, 442, 211–234.CrossRef
go back to reference Maunsell, J. H., & van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience, 3(12), 2563–2586. Maunsell, J. H., & van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience, 3(12), 2563–2586.
go back to reference Milkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press. Milkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.
go back to reference Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.
go back to reference Miller, H., Rayburn-Reeves, R., & Zentall, T. (2009). What do dogs know about hidden objects? Behavioral Processes, 81(3), 439–446.CrossRef Miller, H., Rayburn-Reeves, R., & Zentall, T. (2009). What do dogs know about hidden objects? Behavioral Processes, 81(3), 439–446.CrossRef
go back to reference Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press. Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press.
go back to reference Millikan, R. G. (1993). White Queen psychology and other essays for alice. Cambridge, MA: MIT Press. Millikan, R. G. (1993). White Queen psychology and other essays for alice. Cambridge, MA: MIT Press.
go back to reference Mishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Research, 143(2), 313–323.CrossRef Mishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Research, 143(2), 313–323.CrossRef
go back to reference Morgan, A. (2014). Representations gone mental. Synthese, 191(2), 213–244.CrossRef Morgan, A. (2014). Representations gone mental. Synthese, 191(2), 213–244.CrossRef
go back to reference Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.CrossRef Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.CrossRef
go back to reference Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741. Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741.
go back to reference Neander, K. (2017). A mark of the mental: In defense of informational teleosemantics. Cambridge, MA: MIT Press. Neander, K. (2017). A mark of the mental: In defense of informational teleosemantics. Cambridge, MA: MIT Press.
go back to reference Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 2201–2211. Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 2201–2211.
go back to reference Noë, A. (2010). Vision without representation. In N. Gangopadhyay, M. Madary, & F. Spicer (Eds.), Perception, action, and consciousness: Sensiromotor dynamics and two visual systems (pp. 245–256). Oxford: OUP.CrossRef Noë, A. (2010). Vision without representation. In N. Gangopadhyay, M. Madary, & F. Spicer (Eds.), Perception, action, and consciousness: Sensiromotor dynamics and two visual systems (pp. 245–256). Oxford: OUP.CrossRef
go back to reference O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezac (Eds.), Representation in mind (pp. 1–20). Amsterdam: Elsevier. O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezac (Eds.), Representation in mind (pp. 1–20). Amsterdam: Elsevier.
go back to reference Papineau, D. (1984). Representation and explanation. Philosophy of Science, 51, 550–572.CrossRef Papineau, D. (1984). Representation and explanation. Philosophy of Science, 51, 550–572.CrossRef
go back to reference Papineau, D. (1993). Philosophical naturalism. Oxford: Blackwell. Papineau, D. (1993). Philosophical naturalism. Oxford: Blackwell.
go back to reference Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47(3), 329–342.CrossRef Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47(3), 329–342.CrossRef
go back to reference Piccinini, G. (forthcoming). Nonnatural mental representation. In K. Dolega, T. Schlicht, J. Smortchkova (Eds.), What are mental representations? Oxford: Oxford University Press. Piccinini, G. (forthcoming). Nonnatural mental representation. In K. Dolega, T. Schlicht, J. Smortchkova (Eds.), What are mental representations? Oxford: Oxford University Press.
go back to reference Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38.CrossRef Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38.CrossRef
go back to reference Pilley, J., & Reid, A. (2011). Border collie comprehends object names as verbal referents. Behavioral Processes, 86, 184–195.CrossRef Pilley, J., & Reid, A. (2011). Border collie comprehends object names as verbal referents. Behavioral Processes, 86, 184–195.CrossRef
go back to reference Poulet, J. F., & Hedwig, B. (2003). Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. Journal of Neuroscience, 23(11), 4717–4725. Poulet, J. F., & Hedwig, B. (2003). Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. Journal of Neuroscience, 23(11), 4717–4725.
go back to reference Purves, D. (2018). Neuroscience (6th ed.). New York: Oxford University Press. Purves, D. (2018). Neuroscience (6th ed.). New York: Oxford University Press.
go back to reference Qi, X. L., Katsuki, F., Meyer, T., Rawley, J. B., Zhou, X., Douglas, K. L., et al. (2010). Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Frontiers in Systems Neuroscience, 4, 12. https://doi.org/10.3389/fnsys.2010.00012. Qi, X. L., Katsuki, F., Meyer, T., Rawley, J. B., Zhou, X., Douglas, K. L., et al. (2010). Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Frontiers in Systems Neuroscience, 4, 12. https://​doi.​org/​10.​3389/​fnsys.​2010.​00012.
go back to reference Quintana, J., Yajeya, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Research, 474(2), 211–221.CrossRef Quintana, J., Yajeya, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Research, 474(2), 211–221.CrossRef
go back to reference Ramsey, F. P. (1931). The foundations of mathematics, and other logical essays. London: Routledge and Kegan Paul.MATH Ramsey, F. P. (1931). The foundations of mathematics, and other logical essays. London: Routledge and Kegan Paul.MATH
go back to reference Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRef Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRef
go back to reference Ramsey, W. M. (2016). Untangling two questions about mental representation. New Ideas in Psychology, 40, 3–12.CrossRef Ramsey, W. M. (2016). Untangling two questions about mental representation. New Ideas in Psychology, 40, 3–12.CrossRef
go back to reference Richmond, B. J., & Wurtz, R. H. (1980). Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. Journal of Neurophysiology, 43(4), 1156–1167.CrossRef Richmond, B. J., & Wurtz, R. H. (1980). Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. Journal of Neurophysiology, 43(4), 1156–1167.CrossRef
go back to reference Robinson, D. L., & Wurtz, R. H. (1976). Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. Journal of Neurophysiology, 39(4), 852–870.CrossRef Robinson, D. L., & Wurtz, R. H. (1976). Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. Journal of Neurophysiology, 39(4), 852–870.CrossRef
go back to reference Rockland, K. S., & Knutson, T. (2000). Feedback connections from area MT of the squirrel monkey to areas V1 and V2. Journal of Comparative Neurology, 425(3), 345–368.CrossRef Rockland, K. S., & Knutson, T. (2000). Feedback connections from area MT of the squirrel monkey to areas V1 and V2. Journal of Comparative Neurology, 425(3), 345–368.CrossRef
go back to reference Rodieck, R. W. (1998). The first steps in seeing. Sunderland, MA: Sinauer Associates. Rodieck, R. W. (1998). The first steps in seeing. Sunderland, MA: Sinauer Associates.
go back to reference Rouse, J. (2015). Articulating the world: Conceptual understanding and the scientific image (423 pp.). University of Chicago Press. Rouse, J. (2015). Articulating the world: Conceptual understanding and the scientific image (423 pp.). University of Chicago Press.
go back to reference Rust, N. (2014). Population-based representations: From implicit to explicit. In M. Gazzaniga & G. Ronald (Eds.), The cognitive neurosciences (5th ed., pp. 337–347). Cambridge: MIT Press. Rust, N. (2014). Population-based representations: From implicit to explicit. In M. Gazzaniga & G. Ronald (Eds.), The cognitive neurosciences (5th ed., pp. 337–347). Cambridge: MIT Press.
go back to reference Ryder, D. (2004a). SINBAD neurosemantics: A theory of mental representation. Mind and Language, 19(2), 211–240.CrossRef Ryder, D. (2004a). SINBAD neurosemantics: A theory of mental representation. Mind and Language, 19(2), 211–240.CrossRef
go back to reference Ryder, D. (2004b). Models in the brain. Oxford: Oxford University Press. Ryder, D. (2004b). Models in the brain. Oxford: Oxford University Press.
go back to reference Ryle, G. (1949). The concept of mind. London: Hutchinson’s University Library. Ryle, G. (1949). The concept of mind. London: Hutchinson’s University Library.
go back to reference Salinas, E., & Abbott, L. F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15(10), 6461–6474. Salinas, E., & Abbott, L. F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15(10), 6461–6474.
go back to reference Salzman, C. D., Murasugi, C. M., Britten, K. H., & Newsome, W. T. (1992). Microstimulation in visual area MT: Effects on direction discrimination performance. Journal of Neuroscience, 12(6), 2331–2355. Salzman, C. D., Murasugi, C. M., Britten, K. H., & Newsome, W. T. (1992). Microstimulation in visual area MT: Effects on direction discrimination performance. Journal of Neuroscience, 12(6), 2331–2355.
go back to reference Scarantino, A. (2015). Information as a probabilistic difference maker. Australasian Journal of Philosophy, 93(3), 419–443.CrossRef Scarantino, A. (2015). Information as a probabilistic difference maker. Australasian Journal of Philosophy, 93(3), 419–443.CrossRef
go back to reference Scarantino, A., & Piccinini, G. (2010). Information without truth. Metaphilosophy, 43(3), 313–330.CrossRef Scarantino, A., & Piccinini, G. (2010). Information without truth. Metaphilosophy, 43(3), 313–330.CrossRef
go back to reference Schenk, T., & Zihl, J. (1997). Visual motion perception after brain damage: I. Deficits in global motion perception. Neuropsychologia, 35(9), 1289–1297.CrossRef Schenk, T., & Zihl, J. (1997). Visual motion perception after brain damage: I. Deficits in global motion perception. Neuropsychologia, 35(9), 1289–1297.CrossRef
go back to reference Schneider, S. (2011). The language of thought: A new philosophical direction. Cambridge, MA: MIT Press.CrossRef Schneider, S. (2011). The language of thought: A new philosophical direction. Cambridge, MA: MIT Press.CrossRef
go back to reference Searle, J. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University Press.CrossRef Searle, J. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University Press.CrossRef
go back to reference Sellars, W. (1956). Empiricism and the philosophy of mind. In H. Feigl & M. Scriven (Eds.), Minnesota studies in the philosophy of science (Vol. I, pp. 253–329). Minneapolis, MN: University of Minnesota Press. Sellars, W. (1956). Empiricism and the philosophy of mind. In H. Feigl & M. Scriven (Eds.), Minnesota studies in the philosophy of science (Vol. I, pp. 253–329). Minneapolis, MN: University of Minnesota Press.
go back to reference Shadmehr, R., Brandt, J., & Corkin, S. (1998). Time-dependent motor memory processes in amnesic subjects. Journal of Neurophysiology, 80(3), 1590–1597.CrossRef Shadmehr, R., Brandt, J., & Corkin, S. (1998). Time-dependent motor memory processes in amnesic subjects. Journal of Neurophysiology, 80(3), 1590–1597.CrossRef
go back to reference Shagrir, O. (2012). Structural representations and the brain. The British Journal for the Philosophy of Science, 63(3), 519–545.CrossRef Shagrir, O. (2012). Structural representations and the brain. The British Journal for the Philosophy of Science, 63(3), 519–545.CrossRef
go back to reference Shea, N. (2007). Consumers need information: Supplementing teleosemantics with an input condition. Philosophy and Phenomenological Research, 75, 404–435.CrossRef Shea, N. (2007). Consumers need information: Supplementing teleosemantics with an input condition. Philosophy and Phenomenological Research, 75, 404–435.CrossRef
go back to reference Shea, N. (2014). Exploitable isomorphism and structural representation. Proc Aristot Soc CXIV, 77–92. Shea, N. (2014). Exploitable isomorphism and structural representation. Proc Aristot Soc CXIV, 77–92.
go back to reference Shepard, R., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1(1), 1–17.CrossRef Shepard, R., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1(1), 1–17.CrossRef
go back to reference Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology, 40(1–2), 28–121.CrossRef Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology, 40(1–2), 28–121.CrossRef
go back to reference Sparks, D. L., Lee, C., & Rohrer, W. H. (1990). Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor Symposia on Quantitative Biology, 55, 805–811.CrossRef Sparks, D. L., Lee, C., & Rohrer, W. H. (1990). Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor Symposia on Quantitative Biology, 55, 805–811.CrossRef
go back to reference Spillmann, L. (2014). Receptive fields of visual neurons: The early years. Perception, 43(11), 1145–1176.CrossRef Spillmann, L. (2014). Receptive fields of visual neurons: The early years. Perception, 43(11), 1145–1176.CrossRef
go back to reference Sprevak, M. (2013). Fictionalism about neural representations. The Monist, 96, 539–560.CrossRef Sprevak, M. (2013). Fictionalism about neural representations. The Monist, 96, 539–560.CrossRef
go back to reference Squire, L., & Wixted, J. (2015). Remembering. Daedalus, Winter, 2015, 53–66.CrossRef Squire, L., & Wixted, J. (2015). Remembering. Daedalus, Winter, 2015, 53–66.CrossRef
go back to reference Staley, K. (1999). Golden events and statistics: What’s wrong with Galison’s image/logic distinction. Perspectives on Science, 7, 196–230.MathSciNetMATHCrossRef Staley, K. (1999). Golden events and statistics: What’s wrong with Galison’s image/logic distinction. Perspectives on Science, 7, 196–230.MathSciNetMATHCrossRef
go back to reference Stampe, D. (1977). Toward a causal theory of linguistic representation. In P. A. French, T. E. Uehling Jr., & H. K. Wettstein (Eds.), Midwest studies in philosophy: Studies in the philosophy of language (Vol. 2, pp. 81–102). Minneapolis: University of Minnesota Press. Stampe, D. (1977). Toward a causal theory of linguistic representation. In P. A. French, T. E. Uehling Jr., & H. K. Wettstein (Eds.), Midwest studies in philosophy: Studies in the philosophy of language (Vol. 2, pp. 81–102). Minneapolis: University of Minnesota Press.
go back to reference Stangor, C. (2011). Introduction to Psychology. Saylor Academy. Stangor, C. (2011). Introduction to Psychology. Saylor Academy.
go back to reference Stich, S. (1983). From Folk psychology to cognitive science: The case against belief. Cambridge, MA: MIT Press. Stich, S. (1983). From Folk psychology to cognitive science: The case against belief. Cambridge, MA: MIT Press.
go back to reference Sullivan, J. A. (2009). The multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of neuroscience. Synthese, 167, 511–539.CrossRef Sullivan, J. A. (2009). The multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of neuroscience. Synthese, 167, 511–539.CrossRef
go back to reference Sullivan, J. A. (2010). A role for representation in cognitive neurobiology. Philosophy of Science, 77(5), 875–887.CrossRef Sullivan, J. A. (2010). A role for representation in cognitive neurobiology. Philosophy of Science, 77(5), 875–887.CrossRef
go back to reference Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21, 753–759.CrossRef Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21, 753–759.CrossRef
go back to reference Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8(5), 1531–1568. Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8(5), 1531–1568.
go back to reference van Gelder, T. (1995). What might cognition be, if not computation. The Journal of Philosophy, 92(7), 345–381.CrossRef van Gelder, T. (1995). What might cognition be, if not computation. The Journal of Philosophy, 92(7), 345–381.CrossRef
go back to reference Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind (Revised ed.). Cambridge, MA: MIT Press. Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind (Revised ed.). Cambridge, MA: MIT Press.
go back to reference Wandell, B. A. (1995). Foundations of vision. Sunderland, MA: Sinauer Associates. Wandell, B. A. (1995). Foundations of vision. Sunderland, MA: Sinauer Associates.
go back to reference Waskan, J. (2006). Models and cognition: Prediction and explanation in everyday life and in science. Cambridge, MA: The MIT Press. Waskan, J. (2006). Models and cognition: Prediction and explanation in everyday life and in science. Cambridge, MA: The MIT Press.
go back to reference Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press. Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.
go back to reference Wolpert, D. M., & Miall, R. C. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.MATHCrossRef Wolpert, D. M., & Miall, R. C. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.MATHCrossRef
go back to reference Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRef Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRef
Metadata
Title
Neural Representations Observed
Authors
Eric Thomson
Gualtiero Piccinini
Publication date
24-02-2018
Publisher
Springer Netherlands
Published in
Minds and Machines / Issue 1/2018
Print ISSN: 0924-6495
Electronic ISSN: 1572-8641
DOI
https://doi.org/10.1007/s11023-018-9459-4

Other articles of this Issue 1/2018

Minds and Machines 1/2018 Go to the issue

Premium Partner