Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

1. Neurobiological Models of the Central Complex and the Mushroom Bodies

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study reviews the actual knowledge on functions of the central complex (CX) and the mushroom bodies (MBs) in a genetic model insect, the fly Drosophila melanogaster. Ongoing research of UNIMAINZ and respective data are included. Reference is made to other insects, where respective functions are not yet studied in Drosophila. Neuroanatomical information is reported with regard to the general flow of information in these central brain neuropils. Particular projection systems and circuits are taken into account where this can be linked to functions. Models are developed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Gerber, H. Tanimoto, M. Heisenberg, An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 14(6), 737–744 (2004)CrossRef B. Gerber, H. Tanimoto, M. Heisenberg, An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 14(6), 737–744 (2004)CrossRef
2.
go back to reference B. Gerber, H. Tanimoto, M. Heisenberg, Erratum. An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 15(4), 494–495 (2005)CrossRef B. Gerber, H. Tanimoto, M. Heisenberg, Erratum. An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 15(4), 494–495 (2005)CrossRef
3.
go back to reference U. Hanesch, K.F. Fischbach, M. Heisenberg, Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257(2), 343–366 (1989) U. Hanesch, K.F. Fischbach, M. Heisenberg, Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257(2), 343–366 (1989)
4.
go back to reference X. Liu, R.L. Davis, Insect olfactory memory in time and space. Curr. Opin. Neurobiol. 16(6), 679–685 (2006)CrossRef X. Liu, R.L. Davis, Insect olfactory memory in time and space. Curr. Opin. Neurobiol. 16(6), 679–685 (2006)CrossRef
5.
go back to reference K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation memory in Drosophila. Nature 453(7199), 1244–1247 (2008) K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation memory in Drosophila. Nature 453(7199), 1244–1247 (2008)
6.
go back to reference T. Triphan, B. Poeck, K. Neuser, R. Strauss, Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20(7), 663–668 (2010) T. Triphan, B. Poeck, K. Neuser, R. Strauss, Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20(7), 663–668 (2010)
7.
go back to reference S. Heinze, U. Homberg, Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315(5814), 995–997 (2007)CrossRef S. Heinze, U. Homberg, Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315(5814), 995–997 (2007)CrossRef
8.
go back to reference U. Träger, U. Homberg, Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J. Neurosci. 31(6), 2238–2247 (2011)CrossRef U. Träger, U. Homberg, Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J. Neurosci. 31(6), 2238–2247 (2011)CrossRef
9.
go back to reference U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 680–687 (2011)CrossRef U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 680–687 (2011)CrossRef
10.
go back to reference U. Homberg, Structure and functions of the central complex in insects, in Arthropod Brain. Its Evolution, Development, Structure, and Functions (John Wiley & Sons, New York, 1987), pp. 347–367 U. Homberg, Structure and functions of the central complex in insects, in Arthropod Brain. Its Evolution, Development, Structure, and Functions (John Wiley & Sons, New York, 1987), pp. 347–367
11.
go back to reference U. Homberg, The central complex in the brain of the locust: anatomical and physiological characterisation, in Brain-Perception-Cognition (Thieme, Stuttgart, 1990), p. 318 U. Homberg, The central complex in the brain of the locust: anatomical and physiological characterisation, in Brain-Perception-Cognition (Thieme, Stuttgart, 1990), p. 318
12.
go back to reference R. Strauss, U. Hanesch, M. Kinkelin, R. Wolf, M. Heisenberg, No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. J. Neurogenet. 8(3), 125–155 (1992) R. Strauss, U. Hanesch, M. Kinkelin, R. Wolf, M. Heisenberg, No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. J. Neurogenet. 8(3), 125–155 (1992)
13.
go back to reference P. Callaerts, S. Leng, J. Clements, C. Benassayag, D. Cribbs, Y.Y. Kang, U. Walldorf, K.F. Fischbach, R. Strauss, Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J. Neurobiol. 46(2), 73–88 (2001) P. Callaerts, S. Leng, J. Clements, C. Benassayag, D. Cribbs, Y.Y. Kang, U. Walldorf, K.F. Fischbach, R. Strauss, Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J. Neurobiol. 46(2), 73–88 (2001)
14.
go back to reference B. Poeck, T. Triphan, K. Neuser, R. Strauss, Locomotor control by the central complex in Drosophila—an analysis of the tay bridge mutant. Dev. Neurobiol. 68(8), 1046–1058 (2008) B. Poeck, T. Triphan, K. Neuser, R. Strauss, Locomotor control by the central complex in Drosophila—an analysis of the tay bridge mutant. Dev. Neurobiol. 68(8), 1046–1058 (2008)
15.
go back to reference R. Strauss, The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12(6), 633–638 (2002)CrossRef R. Strauss, The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12(6), 633–638 (2002)CrossRef
16.
go back to reference J. Pielage, G. Steffes, D.C. Lau, B.A. Parente, S.T. Crews, R. Strauss, C. Klämbt, Novel behavioral and developmental defects associated with Drosophila single-minded. Dev. Biol. 249(2), 283–299 (2002) J. Pielage, G. Steffes, D.C. Lau, B.A. Parente, S.T. Crews, R. Strauss, C. Klämbt, Novel behavioral and developmental defects associated with Drosophila single-minded. Dev. Biol. 249(2), 283–299 (2002)
17.
go back to reference R. Ernst, M. Heisenberg, The memory template in Drosophila pattern vision at the flight simulator. Vision. Res. 39(23), 3920–3933 (1999) R. Ernst, M. Heisenberg, The memory template in Drosophila pattern vision at the flight simulator. Vision. Res. 39(23), 3920–3933 (1999)
18.
go back to reference Z. Wang, Y. Pan, W. Li, H. Jiang, L. Chatzimanolis, J. Chang, Z. Gong, L. Liu, Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15(3), 133–142 (2008) Z. Wang, Y. Pan, W. Li, H. Jiang, L. Chatzimanolis, J. Chang, Z. Gong, L. Liu, Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15(3), 133–142 (2008)
19.
go back to reference R. Strauss, J. Pichler, Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol 182(4), 411–423 (1998) R. Strauss, J. Pichler, Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol 182(4), 411–423 (1998)
20.
go back to reference M.V. Chafee, P.S. Goldman-Rakic, Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79(6), 2919–2940 (1998) M.V. Chafee, P.S. Goldman-Rakic, Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79(6), 2919–2940 (1998)
21.
go back to reference G. Putz, F. Bertolucci, T. Raabe, T. Zars, M. Heisenberg, The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci. 24(44), 9745–9751 (2004) G. Putz, F. Bertolucci, T. Raabe, T. Zars, M. Heisenberg, The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci. 24(44), 9745–9751 (2004)
22.
go back to reference O. Sayeed, S. Benzer, Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Nat. Acad. Sci. 93(12), 6079–6084 (1996) O. Sayeed, S. Benzer, Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Nat. Acad. Sci. 93(12), 6079–6084 (1996)
23.
go back to reference L. Liu, Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, M.J. Welsh, Drosophila hygrosensation requires the trp channels water witch and nanchung. Nature 450(7167), 294–298 (2007) L. Liu, Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, M.J. Welsh, Drosophila hygrosensation requires the trp channels water witch and nanchung. Nature 450(7167), 294–298 (2007)
24.
go back to reference S. Pick, R. Strauss, Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15(16), 1473–1478 (2005) S. Pick, R. Strauss, Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15(16), 1473–1478 (2005)
25.
go back to reference B. Kienitz, R. Strauss, Need for speed: conditions for the formation of an implicit memory in Drosophila, in 32nd Goettingen Neurobiol Conference Neuroforum, vol. 15, pp. T25–8A (2009) B. Kienitz, R. Strauss, Need for speed: conditions for the formation of an implicit memory in Drosophila, in 32nd Goettingen Neurobiol Conference Neuroforum, vol. 15, pp. T25–8A (2009)
26.
go back to reference R. Strauss, M. Heisenberg, A higher control center of locomotor behavior in the Drosophila brain. J. Neurosci. 13(5), 1852–1861 (1993) R. Strauss, M. Heisenberg, A higher control center of locomotor behavior in the Drosophila brain. J. Neurosci. 13(5), 1852–1861 (1993)
27.
go back to reference J.R. Martin, T. Raabe, M. Heisenberg, Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 185(3), 277–288 (1999) J.R. Martin, T. Raabe, M. Heisenberg, Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 185(3), 277–288 (1999)
28.
go back to reference J.R. Martin, R. Ernst, M. Heisenberg, Temporal pattern of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 184(1), 73–84 (1999) J.R. Martin, R. Ernst, M. Heisenberg, Temporal pattern of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 184(1), 73–84 (1999)
29.
go back to reference J.R. Martin, P. Faure, R. Ernst, The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila. J. Neurogenet. 15(3–4), 205–219 (2001) J.R. Martin, P. Faure, R. Ernst, The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila. J. Neurogenet. 15(3–4), 205–219 (2001)
30.
go back to reference U. Hanesch, Der Zentralkomplex von Drosophila melanogaster. PhD thesis, Universität Würzburg, (1987) U. Hanesch, Der Zentralkomplex von Drosophila melanogaster. PhD thesis, Universität Würzburg, (1987)
31.
go back to reference M. Mronz, R. Strauss, Visual motion integration controls attractiveness of objects in walking flies and a mobile robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3559–3564 (2008) M. Mronz, R. Strauss, Visual motion integration controls attractiveness of objects in walking flies and a mobile robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3559–3564 (2008)
32.
go back to reference G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076), 551–556 (2006) G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076), 551–556 (2006)
33.
go back to reference G. Hartmann, R. Wehner, The ant’s path integration system: a neural architecture. Biol. Cybern. 73(6), 483–497 (1995)MATH G. Hartmann, R. Wehner, The ant’s path integration system: a neural architecture. Biol. Cybern. 73(6), 483–497 (1995)MATH
34.
go back to reference M. Heisenberg, R. Wolf et al., Vision in Drosophila: Genetics of Microbehaviour (Springer, Berlin, 1984)CrossRef M. Heisenberg, R. Wolf et al., Vision in Drosophila: Genetics of Microbehaviour (Springer, Berlin, 1984)CrossRef
35.
go back to reference M.F. Wernet, M.M. Velez, D.A. Clark, F. Baumann-Klausener, J.R. Brown, M. Klovstad, T. Labhart, T.R. Clandinin, Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22(1), 12–20 (2011) M.F. Wernet, M.M. Velez, D.A. Clark, F. Baumann-Klausener, J.R. Brown, M. Klovstad, T. Labhart, T.R. Clandinin, Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22(1), 12–20 (2011)
36.
go back to reference W. Gronenberg, G.O. López-Riquelme, Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol. Hung. 55(1), 31–37 (2004)CrossRef W. Gronenberg, G.O. López-Riquelme, Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol. Hung. 55(1), 31–37 (2004)CrossRef
37.
go back to reference U. Schröter, R. Menzel, A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465(2), 168–178 (2003)CrossRef U. Schröter, R. Menzel, A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465(2), 168–178 (2003)CrossRef
38.
go back to reference S.M. Farris, G.E. Robinson, S.E. Fahrbach, Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21(16), 6395–6404 (2001) S.M. Farris, G.E. Robinson, S.E. Fahrbach, Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21(16), 6395–6404 (2001)
39.
go back to reference J.S. de Belle, M. Heisenberg et al., Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263(5147), 692–694 (1994) J.S. de Belle, M. Heisenberg et al., Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263(5147), 692–694 (1994)
40.
go back to reference M. Giurfa, Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 193(8), 801–824 (2007)CrossRef M. Giurfa, Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 193(8), 801–824 (2007)CrossRef
41.
go back to reference J. Perez-Orive, O. Mazor, G.C. Turner, S. Cassenaer, R.I. Wilson, G. Laurent, Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)CrossRef J. Perez-Orive, O. Mazor, G.C. Turner, S. Cassenaer, R.I. Wilson, G. Laurent, Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)CrossRef
42.
go back to reference C. Margulies, T. Tully, J. Dubnau, Deconstructing memory in Drosophila. Curr. Biol. 15(17), 700–713 (2005) C. Margulies, T. Tully, J. Dubnau, Deconstructing memory in Drosophila. Curr. Biol. 15(17), 700–713 (2005)
43.
go back to reference L. Liu, R. Wolf, R. Ernst, M. Heisenberg, Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753–756 (1999) L. Liu, R. Wolf, R. Ernst, M. Heisenberg, Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753–756 (1999)
44.
go back to reference S. Tang, A. Guo, Choice behavior of Drosophila facing contradictory visual cues. Science 294(5546), 1543–1547 (2001) S. Tang, A. Guo, Choice behavior of Drosophila facing contradictory visual cues. Science 294(5546), 1543–1547 (2001)
45.
go back to reference K. Zhang, J.Z. Guo, Y. Peng, W. Xi, A. Guo, Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Sci. Signal. 316(5833), 1901 (2007) K. Zhang, J.Z. Guo, Y. Peng, W. Xi, A. Guo, Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Sci. Signal. 316(5833), 1901 (2007)
46.
go back to reference L. Liu, O. Yermolaieva, W.A. Johnson, F.M. Abboud, M.J. Welsh, Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6(3), 267–273 (2003) L. Liu, O. Yermolaieva, W.A. Johnson, F.M. Abboud, M.J. Welsh, Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6(3), 267–273 (2003)
47.
go back to reference M. Rosenzweig, K.M. Brennan, T.D. Tayler, P.O. Phelps, A. Patapoutian, P.A. Garrity, The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19(4), 419–424 (2005) M. Rosenzweig, K.M. Brennan, T.D. Tayler, P.O. Phelps, A. Patapoutian, P.A. Garrity, The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19(4), 419–424 (2005)
48.
go back to reference S.T. Hong, S. Bang, S. Hyun, J. Kang, K. Jeong, D. Paik, J. Chung, J. Kim, cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454(7205), 771–775 (2008) S.T. Hong, S. Bang, S. Hyun, J. Kang, K. Jeong, D. Paik, J. Chung, J. Kim, cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454(7205), 771–775 (2008)
49.
go back to reference S.M.J. McBride, G. Giuliani, C. Choi, P. Krause, D. Correale, K. Watson, G. Baker, K.K. Siwicki, Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967–977 (1999) S.M.J. McBride, G. Giuliani, C. Choi, P. Krause, D. Correale, K. Watson, G. Baker, K.K. Siwicki, Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967–977 (1999)
50.
go back to reference R.W. Siegel, J.C. Hall, Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Nat. Acad. Sci. 76(7), 3430–3434 (1979) R.W. Siegel, J.C. Hall, Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Nat. Acad. Sci. 76(7), 3430–3434 (1979)
51.
go back to reference A.J. Mei-ling, L.C. Griffith, Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn. Mem. 7(1), 32–42 (2000) A.J. Mei-ling, L.C. Griffith, Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn. Mem. 7(1), 32–42 (2000)
52.
go back to reference J.C. Hendricks, S.M. Finn, K.A. Panckeri, J. Chavkin, J.A. Williams, A. Sehgal, A.I. Pack, Rest in Drosophila is a sleep-like state. Neuron 25(1), 129–138 (2000) J.C. Hendricks, S.M. Finn, K.A. Panckeri, J. Chavkin, J.A. Williams, A. Sehgal, A.I. Pack, Rest in Drosophila is a sleep-like state. Neuron 25(1), 129–138 (2000)
53.
go back to reference P.J. Shaw, C. Cirelli, R.J. Greenspan, G. Tononi, Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459), 1834–1837 (2000) P.J. Shaw, C. Cirelli, R.J. Greenspan, G. Tononi, Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459), 1834–1837 (2000)
54.
go back to reference D.A. Nitz, B. Van Swinderen, G. Tononi, R.J. Greenspan, Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12(22), 1934–1940 (2002) D.A. Nitz, B. Van Swinderen, G. Tononi, R.J. Greenspan, Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12(22), 1934–1940 (2002)
55.
go back to reference B. van Swinderen, R.J. Greenspan, Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6(6), 579–586 (2003) B. van Swinderen, R.J. Greenspan, Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6(6), 579–586 (2003)
56.
go back to reference W.J. Joiner, A. Crocker, B.H. White, A. Sehgal, Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441(7094), 757–760 (2006) W.J. Joiner, A. Crocker, B.H. White, A. Sehgal, Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441(7094), 757–760 (2006)
57.
go back to reference J.L. Pitman, J.J. McGill, K.P. Keegan, R. Allada, A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441(7094), 753–756 (2006) J.L. Pitman, J.J. McGill, K.P. Keegan, R. Allada, A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441(7094), 753–756 (2006)
58.
go back to reference L. Seugnet, Y. Suzuki, L. Vine, L. Gottschalk, P.J. Shaw, D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18(15), 1110–1117 (2008) L. Seugnet, Y. Suzuki, L. Vine, L. Gottschalk, P.J. Shaw, D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18(15), 1110–1117 (2008)
59.
go back to reference Q. Liu, S. Liu, L. Kodama, M.R. Driscoll, M.N. Wu, Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114–2123 (2012) Q. Liu, S. Liu, L. Kodama, M.R. Driscoll, M.N. Wu, Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114–2123 (2012)
60.
go back to reference M. Mizunami, J.M. Weibrecht, N.J. Strausfeld, Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402(4), 520–537 (1998)CrossRef M. Mizunami, J.M. Weibrecht, N.J. Strausfeld, Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402(4), 520–537 (1998)CrossRef
61.
go back to reference M. Mizunami, R. Okada, Y. Li, N.J. Strausfeld et al., Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J. Comp. Neurol. 402(4), 501–519 (1998)CrossRef M. Mizunami, R. Okada, Y. Li, N.J. Strausfeld et al., Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J. Comp. Neurol. 402(4), 501–519 (1998)CrossRef
62.
go back to reference C.N. Serway, R.R. Kaufman, R. Strauss, J. Steven de Belle, Mushroom bodies enhance initial motor activity in Drosophila. J. Neurogenet. 23(1–2), 173–184 (2009) C.N. Serway, R.R. Kaufman, R. Strauss, J. Steven de Belle, Mushroom bodies enhance initial motor activity in Drosophila. J. Neurogenet. 23(1–2), 173–184 (2009)
63.
go back to reference J.R. Martin, R. Ernst, M. Heisenberg, Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5(1), 179–191 (1998) J.R. Martin, R. Ernst, M. Heisenberg, Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5(1), 179–191 (1998)
64.
go back to reference A. Baier, B. Wittek, B. Brembs, Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205(9), 1233–1240 (2002) A. Baier, B. Wittek, B. Brembs, Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205(9), 1233–1240 (2002)
65.
go back to reference M. Besson, J.R. Martin, Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J. Neurobiol. 62(3), 386–396 (2004) M. Besson, J.R. Martin, Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J. Neurobiol. 62(3), 386–396 (2004)
66.
go back to reference J. Erber, T.H. Masuhr, R. Menzel, Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5(4), 343–358 (1980) J. Erber, T.H. Masuhr, R. Menzel, Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5(4), 343–358 (1980)
67.
go back to reference C. Schroll, T. Riemensperger, D. Bucher, J. Ehmer, T. Völler, K. Erbguth, B. Gerber, T. Hendel, G. Nagel, E. Buchner et al., Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16(17), 1741–1747 (2006) C. Schroll, T. Riemensperger, D. Bucher, J. Ehmer, T. Völler, K. Erbguth, B. Gerber, T. Hendel, G. Nagel, E. Buchner et al., Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16(17), 1741–1747 (2006)
68.
go back to reference C.J. Burke, W. Huetteroth, D. Owald, E. Perisse, M.J. Krashes, G. Das, D. Gohl, M. Silies, S. Certel, S. Waddell, Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492(7429):433–437 (2012) C.J. Burke, W. Huetteroth, D. Owald, E. Perisse, M.J. Krashes, G. Das, D. Gohl, M. Silies, S. Certel, S. Waddell, Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492(7429):433–437 (2012)
69.
go back to reference M.J. Krashes, A.C. Keene, B. Leung, J.D. Armstrong, S. Waddell, Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53(1), 103–115 (2007) M.J. Krashes, A.C. Keene, B. Leung, J.D. Armstrong, S. Waddell, Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53(1), 103–115 (2007)
70.
go back to reference W.B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20(1), 11–21 (1957)CrossRef W.B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20(1), 11–21 (1957)CrossRef
71.
go back to reference S. Corkin, What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3(2), 153–160 (2002)CrossRef S. Corkin, What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3(2), 153–160 (2002)CrossRef
72.
go back to reference E.E. Smith, S.M. Kosslyn, Cognitive Psychology: Mind and Brain, 1st edn. (Pearson/Prentice Hall, Upper Saddle River, 2007) E.E. Smith, S.M. Kosslyn, Cognitive Psychology: Mind and Brain, 1st edn. (Pearson/Prentice Hall, Upper Saddle River, 2007)
73.
go back to reference B. Kolb, I.Q. Whishaw, Fundamentals of Human Neuropsychology, 4th edn. (W.H. Freeman, New York, 1996) B. Kolb, I.Q. Whishaw, Fundamentals of Human Neuropsychology, 4th edn. (W.H. Freeman, New York, 1996)
74.
go back to reference E.I. Moser, E. Kropff, M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)CrossRef E.I. Moser, E. Kropff, M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)CrossRef
75.
go back to reference C. Yellman, H. Tao, B. He, J. Hirsh, Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc. Nat. Acad. Sci. 94(8), 4131–4136 (1997) C. Yellman, H. Tao, B. He, J. Hirsh, Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc. Nat. Acad. Sci. 94(8), 4131–4136 (1997)
Metadata
Title
Neurobiological Models of the Central Complex and the Mushroom Bodies
Author
R. Strauss
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-02362-5_1