Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Neurocognitive–Inspired Approach for Visual Perception in Autonomous Driving

share
SHARE

Abstract

Since the last decades, deep neural models have been pushing forward the frontiers of artificial intelligence. Applications that in the recent past were considered no more than utopian dreams, now appear to be feasible. The best example is autonomous driving. Despite the growing research aimed at implementing autonomous driving, no artificial intelligence can claim to have reached or closely approached the driving performance of humans, yet. While the early forms of artificial neural networks were aimed at simulating and understanding human cognition, contemporary deep neural networks are totally indifferent to cognitive studies, they are designed with pure engineering goals in mind. Several scholars, we included, argue that it urges to reconnect artificial modeling with an updated knowledge of how complex tasks are realized by the human mind and brain. In this paper, we will first try to distill concepts within neuroscience and cognitive science relevant for the driving behavior. Then, we will identify possible algorithmic counterparts of such concepts, and finally build an artificial neural model exploiting these components for the visual perception task of an autonomous vehicle. More specifically, we will point to four neurocognitive theories: the simulation theory of cognition; the Convergence–divergence Zones hypothesis; the transformational abstraction hypothesis; the free–energy predictive theory. Our proposed model tries to combine a number of existing algorithms that most closely resonate with the assumptions of these four neurocognitive theories.
Literature
1.
go back to reference Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009) MATH Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009) MATH
2.
go back to reference Bojarski, M., et al.: Explaining how a deep neural network trained with end-to-end learning steers a car. CoRR abs/1704.07911 (2017) Bojarski, M., et al.: Explaining how a deep neural network trained with end-to-end learning steers a car. CoRR abs/1704.07911 (2017)
3.
go back to reference Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. CoRR abs/1511.06349 (2015) Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. CoRR abs/1511.06349 (2015)
5.
go back to reference Buckner, C.: Empiricism without magic: transformational abstraction in deep convolutional neural networks. Synthese 195, 5339–5372 (2018) Buckner, C.: Empiricism without magic: transformational abstraction in deep convolutional neural networks. Synthese 195, 5339–5372 (2018)
6.
go back to reference Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. CoRR abs/1405.3531 (2014) Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. CoRR abs/1405.3531 (2014)
7.
go back to reference Chui, M., et al.: Notes from the AI frontier: insights from hundreds of use cases. Technical report, April, McKinsey Global Institute (2018) Chui, M., et al.: Notes from the AI frontier: insights from hundreds of use cases. Technical report, April, McKinsey Global Institute (2018)
8.
go back to reference Damasio, A.: Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62 (1989) Damasio, A.: Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62 (1989)
9.
go back to reference Eickenberg, M., Gramfort, A., Varoquaux, G., Thirion, B.: Seeing it all: convolutional network layers map the function of the human visual system. NeuroImage 152, 184–194 (2017) Eickenberg, M., Gramfort, A., Varoquaux, G., Thirion, B.: Seeing it all: convolutional network layers map the function of the human visual system. NeuroImage 152, 184–194 (2017)
10.
go back to reference Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebr. Cortex 1, 1–47 (1991) Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebr. Cortex 1, 1–47 (1991)
11.
go back to reference Fodor, J.: Modularity of Mind: and Essay on Faculty Psychology. MIT Press, Cambridge (1983) Fodor, J.: Modularity of Mind: and Essay on Faculty Psychology. MIT Press, Cambridge (1983)
12.
go back to reference Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001) Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001)
13.
go back to reference Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010) Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)
14.
go back to reference Friston, K., Fitzgerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G.: Active inference: a process theory. Neural Comput. 29, 1–49 (2017) MathSciNetMATH Friston, K., Fitzgerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G.: Active inference: a process theory. Neural Comput. 29, 1–49 (2017) MathSciNetMATH
15.
go back to reference Friston, K., Stephan, K.E.: Free-energy and the brain. Synthese 159, 417–458 (2007) Friston, K., Stephan, K.E.: Free-energy and the brain. Synthese 159, 417–458 (2007)
16.
go back to reference Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980) MATH Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980) MATH
17.
go back to reference Gilbert, C.D., Wiesel, T.N.: Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979) Gilbert, C.D., Wiesel, T.N.: Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979)
18.
go back to reference Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
19.
go back to reference Grillner, S., Wallén, P.: Innate versus learned movements - a false dichotomy. Progress Brain Res. 143, 1–12 (2004) Grillner, S., Wallén, P.: Innate versus learned movements - a false dichotomy. Progress Brain Res. 143, 1–12 (2004)
20.
go back to reference Güçlü, U., van Gerven, M.A.J.: Unsupervised feature learning improves prediction of human brain activity in response to natural images. PLoS Comput. Biol. 10, 1–16 (2014) Güçlü, U., van Gerven, M.A.J.: Unsupervised feature learning improves prediction of human brain activity in response to natural images. PLoS Comput. Biol. 10, 1–16 (2014)
21.
go back to reference Güçlü, U., van Gerven, M.A.J.: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015) Güçlü, U., van Gerven, M.A.J.: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015)
22.
go back to reference Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017) Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017)
23.
go back to reference Hazelwood, K., et al.: Applied machine learning at Facebook: a datacenter infrastructure perspective. In: IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 620–629 (2018) Hazelwood, K., et al.: Applied machine learning at Facebook: a datacenter infrastructure perspective. In: IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 620–629 (2018)
24.
go back to reference Hesslow, G.: The current status of the simulation theory of cognition. Brain 1428, 71–79 (2012) Hesslow, G.: The current status of the simulation theory of cognition. Brain 1428, 71–79 (2012)
25.
go back to reference Hinton, G., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in Neural Information Processing Systems, pp. 3–10 (1994) Hinton, G., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in Neural Information Processing Systems, pp. 3–10 (1994)
26.
go back to reference Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed representations. In: Rumelhart and McClelland [53], pp. 77–109 Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed representations. In: Rumelhart and McClelland [53], pp. 77–109
27.
go back to reference Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 28, 504–507 (2006) MathSciNetMATH Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 28, 504–507 (2006) MathSciNetMATH
28.
go back to reference Hubel, D., Wiesel, T.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962) Hubel, D., Wiesel, T.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)
29.
go back to reference Hubel, D., Wiesel, T.: Receptive fields and functional architecture of mokey striate cortex. J. Physiol. 195, 215–243 (1968) Hubel, D., Wiesel, T.: Receptive fields and functional architecture of mokey striate cortex. J. Physiol. 195, 215–243 (1968)
30.
go back to reference Jeannerod, M.: Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001) Jeannerod, M.: Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001)
31.
go back to reference Jones, W., Alasoo, K., Fishman, D., Parts, L.: Computational biology: deep learning. Emerg. Top. Life Sci. 1, 136–161 (2017) Jones, W., Alasoo, K., Fishman, D., Parts, L.: Computational biology: deep learning. Emerg. Top. Life Sci. 1, 136–161 (2017)
32.
go back to reference Khan, S., Tripp, B.P.: One model to learn them all. CoRR abs/1706.05137 (2017) Khan, S., Tripp, B.P.: One model to learn them all. CoRR abs/1706.05137 (2017)
33.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of International Conference on Learning Representations (2014) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of International Conference on Learning Representations (2014)
34.
go back to reference Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of International Conference on Learning Representations (2014) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of International Conference on Learning Representations (2014)
35.
go back to reference Kosslyn, S.M.: Image and Brain: the Resolution of the Imagery Debate. MIT Press, Cambridge (1994) Kosslyn, S.M.: Image and Brain: the Resolution of the Imagery Debate. MIT Press, Cambridge (1994)
36.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1090–1098 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1090–1098 (2012)
37.
go back to reference Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: Advances in Neural Information Processing Systems, pp. 2539–2547 (2015) Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: Advances in Neural Information Processing Systems, pp. 2539–2547 (2015)
38.
go back to reference Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 1, 1–40 (2009) MATH Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 1, 1–40 (2009) MATH
39.
go back to reference Li, J., Cheng, H., Guo, H., Qiu, S.: Survey on artificial intelligence for vehicles. Autom. Innov. 1, 2–14 (2018) Li, J., Cheng, H., Guo, H., Qiu, S.: Survey on artificial intelligence for vehicles. Autom. Innov. 1, 2–14 (2018)
40.
go back to reference Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017) Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)
41.
go back to reference Marblestone, A.H., Wayne, G., Kording, K.P.: Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10 (2016). Article 94 Marblestone, A.H., Wayne, G., Kording, K.P.: Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10 (2016). Article 94
42.
go back to reference Meyer, K., Damasio, A.: Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 32, 376–382 (2009) Meyer, K., Damasio, A.: Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 32, 376–382 (2009)
43.
go back to reference Moulton, S.T., Kosslyn, S.M.: Imagining predictions: mental imagery as mental emulation. Philos. Trans. Roy. Soc. B 364, 1273–1280 (2009) Moulton, S.T., Kosslyn, S.M.: Imagining predictions: mental imagery as mental emulation. Philos. Trans. Roy. Soc. B 364, 1273–1280 (2009)
44.
go back to reference Newen, A., Bruin, L.D., Gallagher, S. (eds.): The Oxford Handbook of 4E Cognition. Oxford University Press, Oxford (2018) Newen, A., Bruin, L.D., Gallagher, S. (eds.): The Oxford Handbook of 4E Cognition. Oxford University Press, Oxford (2018)
45.
go back to reference Olier, J.S., Barakova, E., Regazzoni, C., Rauterberg, M.: Re-framing the characteristics of concepts and their relation to learning and cognition in artificial agents. Cogn. Syst. Res. 44, 50–68 (2017) Olier, J.S., Barakova, E., Regazzoni, C., Rauterberg, M.: Re-framing the characteristics of concepts and their relation to learning and cognition in artificial agents. Cogn. Syst. Res. 44, 50–68 (2017)
46.
go back to reference Plebe, A., Da Lio, M., Bortoluzzi, D.: On reliable neural network sensorimotor control in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 21, 711–722 (2019) Plebe, A., Da Lio, M., Bortoluzzi, D.: On reliable neural network sensorimotor control in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 21, 711–722 (2019)
47.
go back to reference Plebe, A., Donà, R., Rosati Papini, G.P., Da Lio, M.: Mental imagery for intelligent vehicles. In: Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems, pp. 43–51. INSTICC, SciTePress (2019) Plebe, A., Donà, R., Rosati Papini, G.P., Da Lio, M.: Mental imagery for intelligent vehicles. In: Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems, pp. 43–51. INSTICC, SciTePress (2019)
48.
go back to reference Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Xing, E.P., Jebara, T. (eds.) Proceedings of Machine Learning Research, pp. 1278–1286 (2014) Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Xing, E.P., Jebara, T. (eds.) Proceedings of Machine Learning Research, pp. 1278–1286 (2014)
49.
go back to reference Rolls, E., Deco, G.: Computational Neuroscience of Vision. Oxford University Press, Oxford (2002) MATH Rolls, E., Deco, G.: Computational Neuroscience of Vision. Oxford University Press, Oxford (2002) MATH
50.
go back to reference Ros, G., Vazquez, L.S.J.M.D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016) Ros, G., Vazquez, L.S.J.M.D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)
51.
go back to reference Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982) MATH Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982) MATH
52.
go back to reference Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y.: Backpropagation: The basic theory. In: Chauvin, Y., Rumelhart, D.E. (eds.) Backpropagation: Theory, Architectures and Applications, pp. 1–34. Lawrence Erlbaum Associates, Mahwah (1995) Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y.: Backpropagation: The basic theory. In: Chauvin, Y., Rumelhart, D.E. (eds.) Backpropagation: Theory, Architectures and Applications, pp. 1–34. Lawrence Erlbaum Associates, Mahwah (1995)
53.
go back to reference Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986) Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986)
54.
go back to reference Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015) Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
55.
go back to reference Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous vehicles. Ann. Rev. Control Robot. Auton. Syst. 1, 8.1–8.24 (2018) Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous vehicles. Ann. Rev. Control Robot. Auton. Syst. 1, 8.1–8.24 (2018)
56.
go back to reference Seger, C.A., Miller, E.K.: Category learning in the brain. Ann. Rev. Neurosci. 33, 203–219 (2010) Seger, C.A., Miller, E.K.: Category learning in the brain. Ann. Rev. Neurosci. 33, 203–219 (2010)
57.
go back to reference Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, J., et al. (eds.) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248 (2017) Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, J., et al. (eds.) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248 (2017)
58.
go back to reference Tripp, B.P.: Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks. In: International Joint Conference on Neural Networks, pp. 3551–3560 (2017) Tripp, B.P.: Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks. In: International Joint Conference on Neural Networks, pp. 3551–3560 (2017)
59.
go back to reference Tschannen, M., Lucic, M., Bachem, O.: Recent advances in autoencoder-based representation learning. In: NIPS Workshop on Bayesian Deep Learning (2018) Tschannen, M., Lucic, M., Bachem, O.: Recent advances in autoencoder-based representation learning. In: NIPS Workshop on Bayesian Deep Learning (2018)
60.
go back to reference Ullman, S.: Using neuroscience to develop artificial intelligence. Science 363, 692–693 (2019) Ullman, S.: Using neuroscience to develop artificial intelligence. Science 363, 692–693 (2019)
61.
go back to reference Van Essen, D.C.: Organization of visual areas in macaque and human cerebral cortex. In: Chalupa, L., Werner, J. (eds.) The Visual Neurosciences. MIT Press, Cambridge (2003) Van Essen, D.C.: Organization of visual areas in macaque and human cerebral cortex. In: Chalupa, L., Werner, J. (eds.) The Visual Neurosciences. MIT Press, Cambridge (2003)
62.
go back to reference Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010) MathSciNetMATH Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010) MathSciNetMATH
64.
go back to reference Wolpert, D.M., Diedrichsen, J., Flanagan, R.: Principles of sensorimotor learning. Nat. Rev. Neurosci. 12, 739–751 (2011) Wolpert, D.M., Diedrichsen, J., Flanagan, R.: Principles of sensorimotor learning. Nat. Rev. Neurosci. 12, 739–751 (2011)
66.
go back to reference Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 7–15 (2010) Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 7–15 (2010)
67.
go back to reference Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: International Conference on Computer Vision, pp. 6–14 (2011) Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: International Conference on Computer Vision, pp. 6–14 (2011)
68.
go back to reference Zhao, J., Mathieu, M., Goroshin, R., LeCun, Y.: Stacked what-where auto-encoders. In: International Conference on Learning Representations, pp. 1–12 (2016) Zhao, J., Mathieu, M., Goroshin, R., LeCun, Y.: Stacked what-where auto-encoders. In: International Conference on Learning Representations, pp. 1–12 (2016)
Metadata
Title
Neurocognitive–Inspired Approach for Visual Perception in Autonomous Driving
Authors
Alice Plebe
Mauro Da Lio
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68028-2_6

Premium Partner