Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Neuronal Networks Simulate Brains

Author : Klaus Mainzer

Published in: Artificial intelligence - When do machines take over?

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Brains are examples of complex information systems based on neuronal information processing. What distinguishes them from other information systems is their ability to cognition, emotion and consciousness. The term cognition (lat. cognoscere for “to recognize”, “to perceive”, “to know”) is used to describe abilities such as perception, learning, thinking, memory and language. Which synaptic signal processing processes underlie these processes? Which neuronal subsystems are involved?

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Roth G (1994) Das Gehirn und seine Wirklichkeit. Kognitive Neuropsychologie und ihre philosophischen Konsequenzen. Suhrkamp, Frankfurt Roth G (1994) Das Gehirn und seine Wirklichkeit. Kognitive Neuropsychologie und ihre philosophischen Konsequenzen. Suhrkamp, Frankfurt
3.
go back to reference Markowitsch HJ (1992) Neuropsychologie des Gedächtnisses. Verlag für Psychologie, Göttingen Markowitsch HJ (1992) Neuropsychologie des Gedächtnisses. Verlag für Psychologie, Göttingen
4.
go back to reference Hebb DO (1949) The organisation of behavior. A neurophysiological theory. Wiley, New York Hebb DO (1949) The organisation of behavior. A neurophysiological theory. Wiley, New York
5.
go back to reference McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 5:115–133CrossRef McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 5:115–133CrossRef
6.
go back to reference Rosenblatt F (1958) The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408CrossRef Rosenblatt F (1958) The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408CrossRef
7.
go back to reference Minsky M, Papert S (1969) Perceptrons, expanded edition. An introduction to computational geometry by Marvin Minsky and Seymour A. Papert. MIT Press, Cambridge Minsky M, Papert S (1969) Perceptrons, expanded edition. An introduction to computational geometry by Marvin Minsky and Seymour A. Papert. MIT Press, Cambridge
8.
go back to reference Möller K, Paaß G (1994) Künstliche neuronale Netze: eine Bestandsaufnahme. KI—Künstliche Intelligenz 4:37–61 Möller K, Paaß G (1994) Künstliche neuronale Netze: eine Bestandsaufnahme. KI—Künstliche Intelligenz 4:37–61
9.
go back to reference Rummelhart DE, Hinton GE, Williams RJ (1986) Learning representation by back-propagating errors. Nature 323:533–536CrossRef Rummelhart DE, Hinton GE, Williams RJ (1986) Learning representation by back-propagating errors. Nature 323:533–536CrossRef
10.
go back to reference Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators neural networks. Neural Networks 2:359–366CrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators neural networks. Neural Networks 2:359–366CrossRef
11.
go back to reference Dean J (2014) Big data, data mining, and machine learning. Value creation for business leaders and practitioneers. Wiley, HobokenCrossRef Dean J (2014) Big data, data mining, and machine learning. Value creation for business leaders and practitioneers. Wiley, HobokenCrossRef
13.
go back to reference Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558CrossRef Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558CrossRef
14.
go back to reference Tank DW, Hopfield JJ (1991) Kollektives Rechnen mit neuronenähnlichne Schaltkreisen. Spektrum der Wissenschaft Sonderheft 11:65 Tank DW, Hopfield JJ (1991) Kollektives Rechnen mit neuronenähnlichne Schaltkreisen. Spektrum der Wissenschaft Sonderheft 11:65
15.
go back to reference Serra R, Zanarini G (1990) Complex systems and cognitive processes. Springer, Berlin, p 78CrossRef Serra R, Zanarini G (1990) Complex systems and cognitive processes. Springer, Berlin, p 78CrossRef
16.
go back to reference Hinton GE, Anderson JA (1981) Parallel models of associative memory. Psychology Press, Hillsdale N.J. Hinton GE, Anderson JA (1981) Parallel models of associative memory. Psychology Press, Hillsdale N.J.
17.
go back to reference Ritter H, Martinetz T, Schulten K (1991) Neuronale Netze. Addison-Wesley, Bonn Ritter H, Martinetz T, Schulten K (1991) Neuronale Netze. Addison-Wesley, Bonn
18.
go back to reference von der Malsburg C (1973) Self-organization of orientation. Sensitive cells in the striate cortex. Kybernetik 14:85–100CrossRef von der Malsburg C (1973) Self-organization of orientation. Sensitive cells in the striate cortex. Kybernetik 14:85–100CrossRef
19.
go back to reference Kohonen T (1991) Self-organizing maps. Springer, Berlin Kohonen T (1991) Self-organizing maps. Springer, Berlin
20.
go back to reference Sutton R, Barto A (1998) Reinforcement-learning: an introduction. A Bradford Book, Cambridge Sutton R, Barto A (1998) Reinforcement-learning: an introduction. A Bradford Book, Cambridge
21.
go back to reference Russell S, Norvig P (2004) Künstliche Intelligenz: Ein moderner Ansatz. Pearson Studium, München Russell S, Norvig P (2004) Künstliche Intelligenz: Ein moderner Ansatz. Pearson Studium, München
22.
go back to reference Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference, 2nd edn. Morgan Kaufmann, San Francisco Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference, 2nd edn. Morgan Kaufmann, San Francisco
23.
go back to reference Tversky A, Kahneman D (2000) Advances in prospect theory: cumulative representation of uncertainty. In: Kahneman D, Tversky A (eds) Choices, values and frames. Cambridge University Press, Cambridge, pp 44–66CrossRef Tversky A, Kahneman D (2000) Advances in prospect theory: cumulative representation of uncertainty. In: Kahneman D, Tversky A (eds) Choices, values and frames. Cambridge University Press, Cambridge, pp 44–66CrossRef
24.
go back to reference Damasio AR (1995) Descartes’ Irrtum. Fühlen, Denken und das menschliche Gehirn. List, München Damasio AR (1995) Descartes’ Irrtum. Fühlen, Denken und das menschliche Gehirn. List, München
25.
go back to reference Picard RW (1997) Affective computing. MIT Press, Cambridge Picard RW (1997) Affective computing. MIT Press, Cambridge
26.
go back to reference Onisawa T (2000) Soft computing technology in Kansei (emotional) information processing. In: Liu Z-Q, Miyamoto S (eds) Soft computing and human-centered machines. Springer, Berlin Onisawa T (2000) Soft computing technology in Kansei (emotional) information processing. In: Liu Z-Q, Miyamoto S (eds) Soft computing and human-centered machines. Springer, Berlin
27.
go back to reference Velasquez JD (1997) Modeling emotions and other motivations in synthetic agents. Amer Assoc Art Int, pp 10–15 Velasquez JD (1997) Modeling emotions and other motivations in synthetic agents. Amer Assoc Art Int, pp 10–15
28.
go back to reference Flohr H (1991) Brain processes and phenomenal consciousness. A new and specific hypothesis. Theory and Psychology 1:245–262CrossRef Flohr H (1991) Brain processes and phenomenal consciousness. A new and specific hypothesis. Theory and Psychology 1:245–262CrossRef
29.
go back to reference Mainzer K (2008) Organic computing and complex dynamical systems. Conceptual foundations and interdisciplinary perspectives. In: Würtz RP (ed) Organic computing. Springer, Berlin, pp 105–122 Mainzer K (2008) Organic computing and complex dynamical systems. Conceptual foundations and interdisciplinary perspectives. In: Würtz RP (ed) Organic computing. Springer, Berlin, pp 105–122
Metadata
Title
Neuronal Networks Simulate Brains
Author
Klaus Mainzer
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-59717-0_7

Premium Partners