Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-01-2022

Neutral or Framed? A Sentiment Analysis of 2019 Abortion Laws

Authors: Danny Valdez, Patricia Goodson

Published in: Sexuality Research and Social Policy

Login to get access
share
SHARE

Abstract

Introduction

This study employs sentiment analysis (SA) to examine the semantic structures of restrictive and protective abortion bills enacted in 2019. SA is a Natural Language Processing (NLP) technique that uses automation to extract affective indicators (emotive language) from text data. Assessing these indicators can help identify whether legal texts are framed, or intentionally biased in their wording. Identifying framing is important for understanding potentially biased interpretations of these laws.

Methods

We identified a sample of 2019 abortion bills using the legislative tracking tool Legiscan and included those that met specified criteria (N = 19 bills). We categorized each bill as restrictive (n = 12) or protective (n = 7). We ran aggregate (i.e., all bills) and separate (protective × restrictive) SA, generating scores that we interpreted qualitatively (higher scores indicated predominance of positive wording).

Results

In the aggregate analysis, 56% of text comprised negative terms (44% positive). Restrictive bills contained more negative language than protective bills (67% vs 58%). Although SA scores varied from −222 to +13, two laws scored 0, indicating neutrality. For comparison, the US Constitution’s score equaled 1.

Conclusion

Our findings confirm SA is useful to examine legal documents for language biases. The abortion bills we assessed seem framed along political ideologies, although the sample provided evidence that neutral wording is possible.

Policy Implications

With the recent additions of conservative-leaning Justices to the US Supreme Court, Roe v. Wade is again at the center of partisan conflict. Thus, how abortion laws are framed draws further implications for how they may be interpreted when challenged in the court system.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
go back to reference Blei, D. M., Ng, A., & Jordan, M. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 30. Blei, D. M., Ng, A., & Jordan, M. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 30.
go back to reference Feldman, R. (2013). Techniques and applications for sentiment analysis. Techniques and Applications for Sentiment Analysis, 56(4), 82–89. Feldman, R. (2013). Techniques and applications for sentiment analysis. Techniques and Applications for Sentiment Analysis, 56(4), 82–89.
go back to reference Knopp, J. L. (2013). The unconstitutionality of Ohio’s House Bill 125: The Heartbeat Bill. Akron Law Review, 46, 35. Knopp, J. L. (2013). The unconstitutionality of Ohio’s House Bill 125: The Heartbeat Bill. Akron Law Review, 46, 35.
go back to reference Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. 20. Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. 20.
go back to reference Lehr, D., & Ohm, P. (2017). Playing with the Data: What Legal Scholars Should Learn about Machine Learning., 51, 65. Lehr, D., & Ohm, P. (2017). Playing with the Data: What Legal Scholars Should Learn about Machine Learning., 51, 65.
go back to reference McKeegan, M. (1993). The politics of abortion: A historical perspective. Women’s health issues: official publication of the Jacobs Institute of Women’s Health, 3(3), 127–131. CrossRef McKeegan, M. (1993). The politics of abortion: A historical perspective. Women’s health issues: official publication of the Jacobs Institute of Women’s Health, 3(3), 127–131. CrossRef
go back to reference Oliver, M. B., Raney, A. A., & Bryant, J. (Eds.). (2019). Media effects (Fourth edition). Routledge. Oliver, M. B., Raney, A. A., & Bryant, J. (Eds.). (2019). Media effects (Fourth edition). Routledge.
go back to reference Pozen, D. E., Talley, E. L., & Nyarko, J. (2019). A computational analysis of constitutional polarization. Cornell Law Review, 105, 85. Pozen, D. E., Talley, E. L., & Nyarko, J. (2019). A computational analysis of constitutional polarization. Cornell Law Review, 105, 85.
go back to reference Prabhu, M. T. (2021). Georgia anti-abortion law heads back to court in September. The Atlanta Journal-Constitution. Prabhu, M. T. (2021). Georgia anti-abortion law heads back to court in September. The Atlanta Journal-Constitution.
go back to reference Tannen, D. (1993). Framing in Discourse. Oxford University Press. Tannen, D. (1993). Framing in Discourse. Oxford University Press.
Metadata
Title
Neutral or Framed? A Sentiment Analysis of 2019 Abortion Laws
Authors
Danny Valdez
Patricia Goodson
Publication date
18-01-2022
Publisher
Springer US
Published in
Sexuality Research and Social Policy
Print ISSN: 1868-9884
Electronic ISSN: 1553-6610
DOI
https://doi.org/10.1007/s13178-022-00690-2