Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Applicable Algebra in Engineering, Communication and Computing 3/2022

23-07-2020 | Original Paper

New binary associative memory model based on the XOR operation

Authors: Juan Luis Díaz de León, Arturo Gamino Carranza

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 3/2022

Login to get access
share
SHARE

Abstract

An associative memory is a special type of artificial neural network that has the purpose of store input patterns with their corresponding output patterns and efficiently recall a pattern from a noise-distorted version. Presented in this article is a new framework for constructing a binary associative memory model based on two new autoinverse operations called extended XOR/XNOR; these new operations are generated from the XOR/XNOR operations, respectively. Two types of associative memory are generated with this model: the max type (XOR-AM max), which is constructed with the maximum of the extended XOR operation, and the min type (XOR-AM min), which is constructed with the minimum of the extended XNOR operation. The XOR-AM max exhibits tolerance against the presence of patterns distorted by dilative noise, whereas the XOR-AM min exhibits tolerance against the presence of patterns distorted by erosive noise; both types of memory converge in a single step, use the same extended XOR/XNOR operator for learning and recalling phases, operate in heteroassociative and autoassociative modes, and show infinite storage capacity for the autoassociative mode. Finally, computer simulation results are presented for the new memories based on the extended XOR/XNOR (XOR-AM), which have better or equal performance compared to other associative memories. For the experiments with mixed noise, the conditions established by the kernel method proposed by Ritter for Morphological Associative Memories were conserved, and the solution algorithm proposed by Hattori for the construction of the kernel patterns of these memories was modified.
Literature
2.
go back to reference Aldape, M., Yáñez, C., Argüelles, A.J.: FPGA implementation of parallel alpha-beta associative memories. In: Campilho, A., Kamel, M. (eds.) ICIAR 2008: Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 5112, pp. 1081–1090. Springer, Berlin, Heidelberg, Póvoa de Varzim, Portugal (2008). https://​doi.​org/​10.​1007/​978-3-540-69812-8_​108 Aldape, M., Yáñez, C., Argüelles, A.J.: FPGA implementation of parallel alpha-beta associative memories. In: Campilho, A., Kamel, M. (eds.) ICIAR 2008: Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 5112, pp. 1081–1090. Springer, Berlin, Heidelberg, Póvoa de Varzim, Portugal (2008). https://​doi.​org/​10.​1007/​978-3-540-69812-8_​108
3.
go back to reference Anderson, J.A., Rosenfeld, E.: Neurocomput. Found. Res. MIT Press, Cambridge (1988) Anderson, J.A., Rosenfeld, E.: Neurocomput. Found. Res. MIT Press, Cambridge (1988)
5.
8.
go back to reference Feng, N., Qiu, Y., Wang, F., Sun, Y.: A unified framework of morphological associative memories. In: Huang, D.S., Li, K., Irwin, G.W. (eds.) Intelligent Control and Automation: International Conference on Intelligent Computing, Lecture Notes in Control and Information Sciences, vol. 344, pp. 1–11. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://​doi.​org/​10.​1007/​978-3-540-37256-1_​1 Feng, N., Qiu, Y., Wang, F., Sun, Y.: A unified framework of morphological associative memories. In: Huang, D.S., Li, K., Irwin, G.W. (eds.) Intelligent Control and Automation: International Conference on Intelligent Computing, Lecture Notes in Control and Information Sciences, vol. 344, pp. 1–11. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://​doi.​org/​10.​1007/​978-3-540-37256-1_​1
12.
go back to reference Hassoun, M.H.: Associative Neural Memories: Theory and Implementation. Oxford University Press Inc, New York (1993) MATH Hassoun, M.H.: Associative Neural Memories: Theory and Implementation. Oxford University Press Inc, New York (1993) MATH
14.
go back to reference Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 79(8), 2554–2558 (1982) MathSciNetCrossRef Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 79(8), 2554–2558 (1982) MathSciNetCrossRef
21.
go back to reference Rosen, K.H.: Discrete Mathematics and its Applications, 5th edn. Mc Graw Hill, New York (2003) MATH Rosen, K.H.: Discrete Mathematics and its Applications, 5th edn. Mc Graw Hill, New York (2003) MATH
22.
go back to reference Sossa, H., Barrón, R.: Extended \(\alpha \beta\) associative memories. Revista Mexicana de Física 53(1), 10–20 (2007) MathSciNetMATH Sossa, H., Barrón, R.: Extended \(\alpha \beta\) associative memories. Revista Mexicana de Física 53(1), 10–20 (2007) MathSciNetMATH
24.
go back to reference Sossa, H., Barrón, R., Vázquez, R.A.: New associative memories to recall real-valued patterns. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2004, Lecture Notes in Computer Science, vol. 3287, pp. 195–202. Springer, Berlin, Heidelberg, Puebla, Mexico (2004). https://​doi.​org/​10.​1007/​978-3-540-30463-0_​24 Sossa, H., Barrón, R., Vázquez, R.A.: New associative memories to recall real-valued patterns. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2004, Lecture Notes in Computer Science, vol. 3287, pp. 195–202. Springer, Berlin, Heidelberg, Puebla, Mexico (2004). https://​doi.​org/​10.​1007/​978-3-540-30463-0_​24
29.
go back to reference Urcid, G., Ritter, G.X.: Noise masking for pattern recall using a single lattice matrix associative memory. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, Studies in Computational Intelligence, vol. 67, pp. 81–100. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://​doi.​org/​10.​1007/​978-3-540-72687-6_​5 Urcid, G., Ritter, G.X.: Noise masking for pattern recall using a single lattice matrix associative memory. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, Studies in Computational Intelligence, vol. 67, pp. 81–100. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://​doi.​org/​10.​1007/​978-3-540-72687-6_​5
31.
go back to reference Yáñez, C., Díaz de León, J.L.: Associative memories based on orderings and binary operators (in Spanish). Computación y Sistemas 6(4), 300–311 (2003) Yáñez, C., Díaz de León, J.L.: Associative memories based on orderings and binary operators (in Spanish). Computación y Sistemas 6(4), 300–311 (2003)
32.
Metadata
Title
New binary associative memory model based on the XOR operation
Authors
Juan Luis Díaz de León
Arturo Gamino Carranza
Publication date
23-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 3/2022
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00446-8

Other articles of this Issue 3/2022

Applicable Algebra in Engineering, Communication and Computing 3/2022 Go to the issue

Premium Partner