Skip to main content
Top

2024 | OriginalPaper | Chapter

New Bounds for the Extreme and the Star Discrepancy of Double-Infinite Matrices

Authors : Jasmin Fiedler, Michael Gnewuch, Christian Weiß

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

According to Aistleitner and Weimar, there exist two-dimensional (double) infinite matrices whose star-discrepancy \(D_N^{*s}\) of the first N rows and s columns, interpreted as N points in \([0,1]^s\), satisfies an inequality of the form
$$ D_N^{*s} \le \sqrt{\alpha } \sqrt{A+B\frac{\ln (\log _2(N))}{s}}\sqrt{\frac{s}{N}} $$
with \(\alpha = \zeta ^{-1}(2) \approx 1.73, A=1165\) and \(B=178\). These matrices are obtained by using i.i.d sequences, and the parameters s and N refer to the dimension and the sample size respectively. In this paper, we improve their result in two directions: First, we change the character of the equation so that the constant A gets replaced by a value \(A_s\) dependent on the dimension s such that for \(s>1\) we have \(A_s<A\). Second, we generalize the result to the case of the (extreme) discrepancy. The paper is complemented by a section where we show numerical results for the dependence of the parameter \(A_s\) on s.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Aistleitner, C.: On the inverse of the discrepancy for infinite dimensional infinite sequences. J. Complex. 29, 182–194 (2013)MathSciNetCrossRef Aistleitner, C.: On the inverse of the discrepancy for infinite dimensional infinite sequences. J. Complex. 29, 182–194 (2013)MathSciNetCrossRef
3.
go back to reference Aistleitner, C., Weimar, M.: Probabilistic star discrepancy bounds for double infinite random matrices. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 271–287. Springer, Berlin (2013) Aistleitner, C., Weimar, M.: Probabilistic star discrepancy bounds for double infinite random matrices. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 271–287. Springer, Berlin (2013)
4.
go back to reference Boukhari, F.: Maximal inequalities with exponential decay under weak dependence conditions. In: AIP Conference Proceedings, vol. 2334, p. 090002. AIP Publishing LLC (2021) Boukhari, F.: Maximal inequalities with exponential decay under weak dependence conditions. In: AIP Conference Proceedings, vol. 2334, p. 090002. AIP Publishing LLC (2021)
5.
go back to reference Doerr, B., Gnewuch, M., Kritzer, P., Pillichshammer, F.: Component-by-component construction of low-discrepancy point sets of small size. Monte Carlo Methods Appl. 14, 129–149 (2008)MathSciNetCrossRef Doerr, B., Gnewuch, M., Kritzer, P., Pillichshammer, F.: Component-by-component construction of low-discrepancy point sets of small size. Monte Carlo Methods Appl. 14, 129–149 (2008)MathSciNetCrossRef
6.
go back to reference Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory, pp. 621–678. Springer International Publishing, Cham (2014) Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory, pp. 621–678. Springer International Publishing, Cham (2014)
7.
go back to reference Dixon, M., Halperin, I., Bilokon, P.: Machine Learning in Finance. Springer, Switzerland (2020)CrossRef Dixon, M., Halperin, I., Bilokon, P.: Machine Learning in Finance. Springer, Switzerland (2020)CrossRef
8.
9.
go back to reference Einmahl, U., Mason, D.M.: Some universal results on the behavior of increments of partial sums. Ann. Probab. 24(3), 1388–1407 (1996)MathSciNetCrossRef Einmahl, U., Mason, D.M.: Some universal results on the behavior of increments of partial sums. Ann. Probab. 24(3), 1388–1407 (1996)MathSciNetCrossRef
10.
go back to reference Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2003)CrossRef Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2003)CrossRef
11.
go back to reference Gnewuch, M.: Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy. J. Complex. 24(2), 154–172 (2008)MathSciNetCrossRef Gnewuch, M.: Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy. J. Complex. 24(2), 154–172 (2008)MathSciNetCrossRef
12.
go back to reference Gnewuch, M., Pasing, H., Weiß, C.: A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy. Math. Comput. 90, 2873–2898 (2021)MathSciNet Gnewuch, M., Pasing, H., Weiß, C.: A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy. Math. Comput. 90, 2873–2898 (2021)MathSciNet
13.
go back to reference Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96, 279–302 (2001)MathSciNetCrossRef Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96, 279–302 (2001)MathSciNetCrossRef
15.
go back to reference Matousek, J.: Geometric Discrepancy: An Illustrated Guide, vol. 18. Springer Science & Business Media, Berlin (1999) Matousek, J.: Geometric Discrepancy: An Illustrated Guide, vol. 18. Springer Science & Business Media, Berlin (1999)
16.
go back to reference Móricz, F.A.: Exponential estimates for the maximum of partial sums. Acta Math. Acad. Sci. Hungar I(33), 159–167 (1979)MathSciNetCrossRef Móricz, F.A.: Exponential estimates for the maximum of partial sums. Acta Math. Acad. Sci. Hungar I(33), 159–167 (1979)MathSciNetCrossRef
17.
go back to reference Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia, Pennsylvania (1992) Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia, Pennsylvania (1992)
18.
go back to reference Paskov, S.H.: Computing high dimensional integrals with applications to finance. Columbia University. Technical Report CUCS-023–94, New York, NY 10027 (1994) Paskov, S.H.: Computing high dimensional integrals with applications to finance. Columbia University. Technical Report CUCS-023–94, New York, NY 10027 (1994)
20.
go back to reference Szewczak, Z.: On the maximal Lévy-Ottaviani inequality for sums of independent and dependent random vectors. Bull. Pol. Acad. Sci. Math 61(2), 155–160 (2013)MathSciNetCrossRef Szewczak, Z.: On the maximal Lévy-Ottaviani inequality for sums of independent and dependent random vectors. Bull. Pol. Acad. Sci. Math 61(2), 155–160 (2013)MathSciNetCrossRef
21.
go back to reference Weiß, C., Nikolic, Z.: An aspect of optimal regression design for lsmc. Monte Carlo Methods Appl. 4, 283–290 (2019)MathSciNetCrossRef Weiß, C., Nikolic, Z.: An aspect of optimal regression design for lsmc. Monte Carlo Methods Appl. 4, 283–290 (2019)MathSciNetCrossRef
Metadata
Title
New Bounds for the Extreme and the Star Discrepancy of Double-Infinite Matrices
Authors
Jasmin Fiedler
Michael Gnewuch
Christian Weiß
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_11

Premium Partner