Skip to main content
Top

2024 | OriginalPaper | Chapter

New G-Closed Sets with Related to an Ideal

Author : Aynur Keskin Kaymakci

Published in: Mathematical Methods for Engineering Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ideal is a family which has two properties as known heredity and finite additive. Besides it is a partially ordered collection of sets. This using this concept with a topology was obtained a new topology finer than old. Elements of topology are open sets and their complements are closed sets. It is known that generalized closed set is weaker than closed. Then, several authors studied on this subject both topological spaces and ideal topological spaces. In this paper, we recall some concepts and their basic properties. Then, we introduce new g-closed set called \(*Ig\)-closed set by using ideal and obtained some properties of it. We have obtain a diagram showing the relationships between them and other types of g-closed sets in the literature. Besides, we define a concept of \(*Ig\)-open set and investigate it. We give that a family of consisting of this sets in any I-space forms a minimal structure. Finally, we mention when \(*Ig\)-closed is conserved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abd El-Monsef, M.E., Lashien, E.F., Nasef, A.A.: On \(I-\)open sets and \(I-\)continuous functions. Kyungpook Math. J. 32(1), 21–30 (1992) Abd El-Monsef, M.E., Lashien, E.F., Nasef, A.A.: On \(I-\)open sets and \(I-\)continuous functions. Kyungpook Math. J. 32(1), 21–30 (1992)
2.
3.
go back to reference Dontchev, J.: On Hausdorff spaces via topological ideals and I-irresolute functions. Ann. N. Y. Acad. Sci. 767, 28–38 (1995). Papers on General Topology and Applications Dontchev, J.: On Hausdorff spaces via topological ideals and I-irresolute functions. Ann. N. Y. Acad. Sci. 767, 28–38 (1995). Papers on General Topology and Applications
4.
go back to reference Dontchev, J., Ganster, M., Noiri, T.: Unified operation approach of generalized closed sets via topological ideals. Math. Japon. 49, 395–401 (1999)MathSciNet Dontchev, J., Ganster, M., Noiri, T.: Unified operation approach of generalized closed sets via topological ideals. Math. Japon. 49, 395–401 (1999)MathSciNet
6.
go back to reference Jafari, S., Rajesh, N.: Generalized closed sets with respect to an ideal. Eur. J. Pure Appl. Math. 4(2), 147–152 (2011)MathSciNet Jafari, S., Rajesh, N.: Generalized closed sets with respect to an ideal. Eur. J. Pure Appl. Math. 4(2), 147–152 (2011)MathSciNet
8.
go back to reference Jankovic, D., Hamlett, T.R.: Compatible extensions of ideals. Boll. Un. Mat. Ital. 7(6-B), 453–465 (1992) Jankovic, D., Hamlett, T.R.: Compatible extensions of ideals. Boll. Un. Mat. Ital. 7(6-B), 453–465 (1992)
9.
go back to reference Keskin, A., Yüksel, S., Noiri, T.: On I-extremally disconnected spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 5(1), 33–40 (2007) Keskin, A., Yüksel, S., Noiri, T.: On I-extremally disconnected spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 5(1), 33–40 (2007)
10.
go back to reference Keskin Kaymakci, A.: g-I-closed sets. Conf. Proc. Sci. Technol. 5(2), 241–245 (2022) Keskin Kaymakci, A.: g-I-closed sets. Conf. Proc. Sci. Technol. 5(2), 241–245 (2022)
11.
go back to reference Kuratowski, K.: Topologies. Vol. I. Warszawa (1933) Kuratowski, K.: Topologies. Vol. I. Warszawa (1933)
12.
go back to reference Kuratowski, K.: Topology. Vol. I. Academic Press, New York (1966) Kuratowski, K.: Topology. Vol. I. Academic Press, New York (1966)
14.
go back to reference Mashhour, A.S., Allam, A.A., Mahmoud, F.S., Khedr, F.H.: On supra topological spaces. Indian J. Pure Appl. Math. 14(4), 502–510 (1983)MathSciNet Mashhour, A.S., Allam, A.A., Mahmoud, F.S., Khedr, F.H.: On supra topological spaces. Indian J. Pure Appl. Math. 14(4), 502–510 (1983)MathSciNet
15.
go back to reference Natkaniec, T.: On I-continuity and I-semicontinuity points. Math. Slovaca 36(3), 297–312 (1986)MathSciNet Natkaniec, T.: On I-continuity and I-semicontinuity points. Math. Slovaca 36(3), 297–312 (1986)MathSciNet
16.
17.
go back to reference Vaidyanathasvamy, R.: Set Topology. Chelsa Publishing Company, New York (1960) Vaidyanathasvamy, R.: Set Topology. Chelsa Publishing Company, New York (1960)
Metadata
Title
New G-Closed Sets with Related to an Ideal
Author
Aynur Keskin Kaymakci
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_22

Premium Partners