Skip to main content
Top
Published in: BIT Numerical Mathematics 3/2019

19-04-2019

New stability results for explicit Runge–Kutta methods

Author: Rachid Ait-Haddou

Published in: BIT Numerical Mathematics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The theory of polar forms of polynomials is used to provide sharp bounds on the radius of the largest possible disc (absolute stability radius), and on the length of the largest possible real interval (parabolic stability radius), to be inscribed in the stability region of an explicit Runge–Kutta method. The bounds on the absolute stability radius are derived as a consequence of Walsh’s coincidence theorem, while the bounds on the parabolic stability radius are achieved by using Lubinsky–Ziegler’s inequality on the coefficients of polynomials expressed in the Bernstein bases and by appealing to a generalized variation diminishing property of Bézier curves. We also derive inequalities between the absolute stability radii of methods with different orders and number of stages.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Ait-Haddou, R.: Adaptative spectral transformations of Poisson–Charlier measures and optimal threshold factors of one-step methods. arXiv:1804.09972 Ait-Haddou, R.: Adaptative spectral transformations of Poisson–Charlier measures and optimal threshold factors of one-step methods. arXiv:​1804.​09972
4.
go back to reference Ait-Haddou, R., Mazure, M.-L.: The fundamental blossoming inequality in Chebyshev spaces I: applications to Schur functions. Found. Comput. Math. 18, 135–158 (2018)MathSciNetMATHCrossRef Ait-Haddou, R., Mazure, M.-L.: The fundamental blossoming inequality in Chebyshev spaces I: applications to Schur functions. Found. Comput. Math. 18, 135–158 (2018)MathSciNetMATHCrossRef
5.
go back to reference Ait-Haddou, R., Mazure, M.-L.: Approximation by Chebyshevian Bernstein operators versus convergence of dimension elevation. Constr. Approx. 43(3), 425–461 (2016)MathSciNetMATHCrossRef Ait-Haddou, R., Mazure, M.-L.: Approximation by Chebyshevian Bernstein operators versus convergence of dimension elevation. Constr. Approx. 43(3), 425–461 (2016)MathSciNetMATHCrossRef
6.
go back to reference Ait-Haddou, R.: \(q\)-Blossoming and Hermite–Padé approximants to the \(q\)-exponential function. Numer. Algorithms 76(1), 53–66 (2017)MathSciNetMATHCrossRef Ait-Haddou, R.: \(q\)-Blossoming and Hermite–Padé approximants to the \(q\)-exponential function. Numer. Algorithms 76(1), 53–66 (2017)MathSciNetMATHCrossRef
7.
go back to reference Ait-Haddou, R., Herzog, W., Nomura, T.: Complex Bézier curves and the geometry of polygons. Comput. Aided Geom. Des. 27(7), 525–537 (2010)MATHCrossRef Ait-Haddou, R., Herzog, W., Nomura, T.: Complex Bézier curves and the geometry of polygons. Comput. Aided Geom. Des. 27(7), 525–537 (2010)MATHCrossRef
8.
go back to reference Ait-Haddou, R., Nomura, T., Biard, L.: A refinement of the variation diminishing property of Bézier curves. Comput. Aided Geom. Des. 27(2), 202–211 (2010)MATHCrossRef Ait-Haddou, R., Nomura, T., Biard, L.: A refinement of the variation diminishing property of Bézier curves. Comput. Aided Geom. Des. 27(2), 202–211 (2010)MATHCrossRef
9.
go back to reference Ait-Haddou, R., Nomura, T.: Complex Bézier curves and the geometry of polynomials. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces, Lecture Note in Computer Sciences, vol. 6920, pp. 43–65. Springer, Berlin (2012)MATH Ait-Haddou, R., Nomura, T.: Complex Bézier curves and the geometry of polynomials. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces, Lecture Note in Computer Sciences, vol. 6920, pp. 43–65. Springer, Berlin (2012)MATH
10.
go back to reference Bogatyrev, A.B.: Effective solution of the problem of the best stability polynomial. Mat. Sb. 196(7), 27–50 (2005)MathSciNetCrossRef Bogatyrev, A.B.: Effective solution of the problem of the best stability polynomial. Mat. Sb. 196(7), 27–50 (2005)MathSciNetCrossRef
11.
go back to reference Bernstein, S.N.: Sur une propriété de polynômes. Commun. Soc. Math. Kharkow S&. 2 14(1–2), 1–6 (1913); In: Collected Works, vol. 1, Izd. AN SSSR, Moscow, pp. 146–150 (1952) Bernstein, S.N.: Sur une propriété de polynômes. Commun. Soc. Math. Kharkow S&. 2 14(1–2), 1–6 (1913); In: Collected Works, vol. 1, Izd. AN SSSR, Moscow, pp. 146–150 (1952)
13.
14.
go back to reference Grosswald, E.: Bessel Polynomials, Springer Lecture Notes 698, Berlin (1978) Grosswald, E.: Bessel Polynomials, Springer Lecture Notes 698, Berlin (1978)
15.
go back to reference Guillou, A., Lago, B.: Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, à pas séparés et à pas liés. Recherche de formules à grand rayon de stabilité, 1er Cong. Assoc. Fran. Calcul, AFCAL, Grenoble, pp. 43–56 (1960) Guillou, A., Lago, B.: Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, à pas séparés et à pas liés. Recherche de formules à grand rayon de stabilité, 1er Cong. Assoc. Fran. Calcul, AFCAL, Grenoble, pp. 43–56 (1960)
16.
17.
go back to reference Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math. 37, 61–91 (1981)MathSciNetMATHCrossRef Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math. 37, 61–91 (1981)MathSciNetMATHCrossRef
18.
go back to reference Ketcheson, D., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)MathSciNetMATHCrossRef Ketcheson, D., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)MathSciNetMATHCrossRef
19.
go back to reference Kinnmark, I.P.E., Gray, W.G.: One step integration methods of third-fourth order accuracy with large hyperbolic stability limits. Math. Comput. Simul. 26(3), 181–188 (1984)MathSciNetMATHCrossRef Kinnmark, I.P.E., Gray, W.G.: One step integration methods of third-fourth order accuracy with large hyperbolic stability limits. Math. Comput. Simul. 26(3), 181–188 (1984)MathSciNetMATHCrossRef
20.
go back to reference Kinnmark, I.P.E., Gray, W.G.: One step integration methods with maximum stability regions. Math. Comput. Simul. 26(2), 87–92 (1984)MathSciNetMATHCrossRef Kinnmark, I.P.E., Gray, W.G.: One step integration methods with maximum stability regions. Math. Comput. Simul. 26(2), 87–92 (1984)MathSciNetMATHCrossRef
21.
go back to reference Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetMATHCrossRef Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetMATHCrossRef
22.
24.
go back to reference Lebedev, V.I.: A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions I, II. Russ. J. Numer. Anal. Math. Model. 8(3), 195–222 (1993)MathSciNetMATHCrossRef Lebedev, V.I.: A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions I, II. Russ. J. Numer. Anal. Math. Model. 8(3), 195–222 (1993)MathSciNetMATHCrossRef
25.
go back to reference Lubinsky, D.S., Ziegler, Z.: Coefficients bounds in the Lorentz representation of a polynomial. Can. Math. Bull. 33, 197–206 (1990)MathSciNetMATHCrossRef Lubinsky, D.S., Ziegler, Z.: Coefficients bounds in the Lorentz representation of a polynomial. Can. Math. Bull. 33, 197–206 (1990)MathSciNetMATHCrossRef
26.
go back to reference Mead, J.L., Renaut, R.A.: Optimal Runge–Kutta methods for first order pseudospectral operators. J. Comput. Phys. 152(1), 404–419 (1999)MathSciNetMATHCrossRef Mead, J.L., Renaut, R.A.: Optimal Runge–Kutta methods for first order pseudospectral operators. J. Comput. Phys. 152(1), 404–419 (1999)MathSciNetMATHCrossRef
29.
go back to reference McLachlan, R.I., Gray, S.K.: Optimal stability polynomials for splitting methods, with applications to the time-dependent Schrödinger equation. Appl. Numer. Math. 25, 275–286 (1997)MathSciNetMATHCrossRef McLachlan, R.I., Gray, S.K.: Optimal stability polynomials for splitting methods, with applications to the time-dependent Schrödinger equation. Appl. Numer. Math. 25, 275–286 (1997)MathSciNetMATHCrossRef
30.
go back to reference Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963)MATH Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963)MATH
31.
go back to reference Owren, B., Seip, K.: Some Stability Results for Explicit Runge–Kutta Methods. Mathematics and Computation, vol. 6/89, The University of Trondheim (1989) Owren, B., Seip, K.: Some Stability Results for Explicit Runge–Kutta Methods. Mathematics and Computation, vol. 6/89, The University of Trondheim (1989)
32.
go back to reference Owren, B., Seip, K.: A uniqueness result related to the stability of explicit Runge–Kutta methods. BIT Numer. Math. 31(2), 373–374 (1991)MathSciNetMATHCrossRef Owren, B., Seip, K.: A uniqueness result related to the stability of explicit Runge–Kutta methods. BIT Numer. Math. 31(2), 373–374 (1991)MathSciNetMATHCrossRef
33.
34.
go back to reference Popa, D., Rasa, I.: On the best constant in Hyers–Ulam stability of some positive linear operators. J. Math. Anal. Appl. 412(1), 103–108 (2014)MathSciNetMATHCrossRef Popa, D., Rasa, I.: On the best constant in Hyers–Ulam stability of some positive linear operators. J. Math. Anal. Appl. 412(1), 103–108 (2014)MathSciNetMATHCrossRef
36.
go back to reference Renaut, R.A.: Two-step Runge–Kutta methods and hyperbolic partial differential equations. Math. Comput. 55(192), 563–579 (1990)MathSciNetMATHCrossRef Renaut, R.A.: Two-step Runge–Kutta methods and hyperbolic partial differential equations. Math. Comput. 55(192), 563–579 (1990)MathSciNetMATHCrossRef
39.
go back to reference Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with application to hyperbolic–parabolic equations. Numer. Math. 106(2), 303–334 (2007)MathSciNetMATHCrossRef Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with application to hyperbolic–parabolic equations. Numer. Math. 106(2), 303–334 (2007)MathSciNetMATHCrossRef
40.
go back to reference van der Marel, R.P.: Stability radius of polynomials occurring in the numerical solution of initial value problems. BIT Numer. Math. 30(3), 516–528 (1990)MathSciNetMATHCrossRef van der Marel, R.P.: Stability radius of polynomials occurring in the numerical solution of initial value problems. BIT Numer. Math. 30(3), 516–528 (1990)MathSciNetMATHCrossRef
41.
go back to reference Verwer, J.G.: Explicit Runge–Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22(1–3), 359–379 (1996)MathSciNetMATHCrossRef Verwer, J.G.: Explicit Runge–Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22(1–3), 359–379 (1996)MathSciNetMATHCrossRef
42.
go back to reference Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion reaction problems. J. Comput. Phys. 201(1), 61–79 (2004)MathSciNetMATHCrossRef Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion reaction problems. J. Comput. Phys. 201(1), 61–79 (2004)MathSciNetMATHCrossRef
43.
44.
go back to reference van Der Houwen, P.J.: Construction of Integration Formulas for Initial Value Problems, vol. 19. Elsevier, Amsterdam (2012) van Der Houwen, P.J.: Construction of Integration Formulas for Initial Value Problems, vol. 19. Elsevier, Amsterdam (2012)
45.
go back to reference Vichnevetsky, R.: New stability theorems concerning one-step numerical methods for ordinary differential equations. Math. Comput. Simul. 25(3), 199–205 (1983)MathSciNetMATHCrossRef Vichnevetsky, R.: New stability theorems concerning one-step numerical methods for ordinary differential equations. Math. Comput. Simul. 25(3), 199–205 (1983)MathSciNetMATHCrossRef
Metadata
Title
New stability results for explicit Runge–Kutta methods
Author
Rachid Ait-Haddou
Publication date
19-04-2019
Publisher
Springer Netherlands
Published in
BIT Numerical Mathematics / Issue 3/2019
Print ISSN: 0006-3835
Electronic ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-019-00752-9

Other articles of this Issue 3/2019

BIT Numerical Mathematics 3/2019 Go to the issue

Premium Partner