Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

02-02-2019

New Third Order Low-Storage SSP Explicit Runge–Kutta Methods

Authors: I. Higueras, T. Roldán

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When a high dimension system of ordinary differential equations is solved numerically, the computer memory capacity may be exhausted. Thus, for such systems, it is important to incorporate low memory usage to some other properties of the scheme. In the context of strong stability preserving (SSP) schemes, some low-storage methods have been considered in the literature. In this paper we study 5-stage third order \(2N^*\) low-storage SSP explicit Runge–Kutta schemes. These are SSP schemes that can be implemented with 2N memory registers, where N is the dimension of the problem, and retain the previous time step approximation. This last property is crucial for a variable step size implementation of the scheme. In this paper, first we show that the optimal SSP methods cannot be implemented with \(2N^*\) memory registers. Next, two non-optimal SSP \(2N^*\) low-storage methods are constructed; although their SSP coefficients are not optimal, they achieve some other interesting properties. Finally, we show some numerical experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)MathSciNetCrossRefMATH
2.
go back to reference Calvo, M., Franco, J.M., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)MathSciNetCrossRefMATH
3.
go back to reference Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ode systems. J. Comput. Phys 286, 172–193 (2015)MathSciNetCrossRefMATH Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ode systems. J. Comput. Phys 286, 172–193 (2015)MathSciNetCrossRefMATH
4.
go back to reference Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)MathSciNetCrossRefMATH
5.
go back to reference Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefMATH
6.
go back to reference Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH
7.
go back to reference Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)MathSciNetCrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)MathSciNetCrossRefMATH
9.
go back to reference Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH
10.
go back to reference Happenhofer, N., Koch, O., Kupka, F.: IMEX methods for the ANTARES code. ASC report, 27 (2011) Happenhofer, N., Koch, O., Kupka, F.: IMEX methods for the ANTARES code. ASC report, 27 (2011)
11.
go back to reference Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2 revised edn. Springer, Berlin (1993)MATH Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2 revised edn. Springer, Berlin (1993)MATH
12.
go back to reference Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)MathSciNetCrossRefMATH Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)MathSciNetCrossRefMATH
14.
go back to reference Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH
15.
go back to reference Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefMATH Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefMATH
16.
17.
go back to reference Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)MathSciNetCrossRefMATH Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)MathSciNetCrossRefMATH
18.
go back to reference Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: Rk-opt: software for the design of Runge–Kutta methods, version 0.2 (2013) Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: Rk-opt: software for the design of Runge–Kutta methods, version 0.2 (2013)
19.
go back to reference Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetCrossRefMATH Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetCrossRefMATH
21.
go back to reference LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH
22.
go back to reference Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)MathSciNetCrossRefMATH Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)MathSciNetCrossRefMATH
24.
go back to reference Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATH Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATH
26.
go back to reference Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)MathSciNetCrossRefMATH Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)MathSciNetCrossRefMATH
27.
go back to reference Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)MathSciNetCrossRefMATH Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)MathSciNetCrossRefMATH
28.
go back to reference Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)MathSciNetCrossRefMATH Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)MathSciNetCrossRefMATH
29.
go back to reference Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simulat. 62(1–2), 125–135 (2003)MathSciNetCrossRefMATH Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simulat. 62(1–2), 125–135 (2003)MathSciNetCrossRefMATH
30.
go back to reference Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977) Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977)
Metadata
Title
New Third Order Low-Storage SSP Explicit Runge–Kutta Methods
Authors
I. Higueras
T. Roldán
Publication date
02-02-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00916-3

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner