Skip to main content
Top

2018 | OriginalPaper | Chapter

3. New Trends in Solar Cells Research

Author : Mihaela Girtan

Published in: Future Solar Energy Devices

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar cells converts the solar photons energy into electrical energy. The first solar cell was realized in 1954 at Bell Laboratories. The functioning principles of this first generation solar cells are based on a p-n homojunction realized in a bulk semiconductor (Silicon or GaAs). Figure 3.1 depicts the charge carriers’ distribution and band diagram levels before and after junction formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion ( Academic Press, London, 1983) A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion ( Academic Press, London, 1983)
2.
go back to reference W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)CrossRef W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)CrossRef
3.
go back to reference T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006) T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006)
5.
go back to reference F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater. Sol. Cells 93(4), 422–441 (2009)CrossRef F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater. Sol. Cells 93(4), 422–441 (2009)CrossRef
7.
go back to reference CNRS Innovation letters No. 15, (18/04/2015 au 11/06/2015) communicate 10/06/2015 CNRS Innovation letters No. 15, (18/04/2015 au 11/06/2015) communicate 10/06/2015
8.
go back to reference B. Wang, L.L. Kerr, Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95(8), 2531–2535 (2011)CrossRef B. Wang, L.L. Kerr, Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95(8), 2531–2535 (2011)CrossRef
9.
go back to reference L. Leonat et al., 4% efficient polymer solar cells on paper substrates. J. Phys. Chem. C 118(30), 16813–16817 (2014)CrossRef L. Leonat et al., 4% efficient polymer solar cells on paper substrates. J. Phys. Chem. C 118(30), 16813–16817 (2014)CrossRef
10.
go back to reference H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592–3598 (2015)CrossRef H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592–3598 (2015)CrossRef
11.
go back to reference D.B. Fraser, H.D. Cook, Highly conductive, transparent films of sputtered In2−x SnxO3−y. J. Electrochem. Soc. 119, 1368 (1972)CrossRef D.B. Fraser, H.D. Cook, Highly conductive, transparent films of sputtered In2−x SnxO3−y. J. Electrochem. Soc. 119, 1368 (1972)CrossRef
12.
go back to reference G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)CrossRef G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)CrossRef
13.
go back to reference M. Girtan, R. Mallet, D. Caillou, G.G. Rusu, M. Rusu, Thermal stability of poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid films electrical properties. Superlattices Microstruct. 46, 44–51 (2009)CrossRef M. Girtan, R. Mallet, D. Caillou, G.G. Rusu, M. Rusu, Thermal stability of poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid films electrical properties. Superlattices Microstruct. 46, 44–51 (2009)CrossRef
14.
go back to reference M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)CrossRef M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)CrossRef
15.
go back to reference P. Kubis et al., High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95%. Org. Electron. 15(10), 2256–2263 (2014)CrossRef P. Kubis et al., High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95%. Org. Electron. 15(10), 2256–2263 (2014)CrossRef
16.
go back to reference S. Berny et al., Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 1500342 (2015) S. Berny et al., Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 1500342 (2015)
17.
go back to reference S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef
18.
go back to reference Zhinke Liu, Jinhua Li, Feng Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013)CrossRef Zhinke Liu, Jinhua Li, Feng Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013)CrossRef
19.
go back to reference F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)CrossRef F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)CrossRef
20.
go back to reference M. Girtan, On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 14(1), 200–205 (2013)CrossRef M. Girtan, On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 14(1), 200–205 (2013)CrossRef
21.
go back to reference H.L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environemental Sci. 5, 5994 (2012)CrossRef H.L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environemental Sci. 5, 5994 (2012)CrossRef
22.
go back to reference P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377–415 (2012)MathSciNetCrossRef P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377–415 (2012)MathSciNetCrossRef
23.
go back to reference M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446–450 (2010)CrossRef M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446–450 (2010)CrossRef
24.
go back to reference M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRef M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRef
25.
go back to reference H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)CrossRef H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)CrossRef
28.
go back to reference L.Y. Chang, R.R. Lunt, P.R. Brown, V. Bulovic, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS Colloidal Quantum Dot/CdS heterojunctions. Nano Lett. 13(3), 994–999 (2013)CrossRef L.Y. Chang, R.R. Lunt, P.R. Brown, V. Bulovic, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS Colloidal Quantum Dot/CdS heterojunctions. Nano Lett. 13(3), 994–999 (2013)CrossRef
29.
go back to reference A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)CrossRef A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)CrossRef
30.
go back to reference I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736–748 (2014)CrossRef I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736–748 (2014)CrossRef
31.
go back to reference C.Y. Yang, M.S. Qin, Y.M. Wang, D.Y. Wan, F.Q. Huang, J.H. Lin, Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Sci. Rep. 3(1286), 1–7 (2013) C.Y. Yang, M.S. Qin, Y.M. Wang, D.Y. Wan, F.Q. Huang, J.H. Lin, Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Sci. Rep. 3(1286), 1–7 (2013)
32.
go back to reference I. Ramiro, E. Antolin, J. Hwang, A. Teran, A.J. Martin, P.G. Linares, J. Millunchick, J. Phillips, A. Marti, A. Luque, Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovoltaics 7(2), 508–512 (2017)CrossRef I. Ramiro, E. Antolin, J. Hwang, A. Teran, A.J. Martin, P.G. Linares, J. Millunchick, J. Phillips, A. Marti, A. Luque, Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovoltaics 7(2), 508–512 (2017)CrossRef
33.
go back to reference A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
34.
go back to reference B. Dongqin et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016) B. Dongqin et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016)
35.
go back to reference M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRef M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRef
36.
go back to reference H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)CrossRef H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)CrossRef
37.
go back to reference J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013) J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)
38.
go back to reference H. Choi, C-K Mai, H-B Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6(7348), 1–6 (2015) H. Choi, C-K Mai, H-B Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6(7348), 1–6 (2015)
39.
go back to reference J.P. Mailoa et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(121105), 1–4 (2015) J.P. Mailoa et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(121105), 1–4 (2015)
40.
go back to reference T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRef T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRef
41.
go back to reference T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668–1674 (2002)CrossRef T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668–1674 (2002)CrossRef
42.
go back to reference J. Merigeon et al., Studies on Pr3+–Yb3+ co-doped ZBLA as rare earth down convertor glasses for solar cells encapsulation. Opt. Mater. 48, 243–246 (2015)CrossRef J. Merigeon et al., Studies on Pr3+–Yb3+ co-doped ZBLA as rare earth down convertor glasses for solar cells encapsulation. Opt. Mater. 48, 243–246 (2015)CrossRef
43.
go back to reference O. Maalej, J. Merigeon, B. Boulard, M. Girtan, Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement. Opt. Mater. 60, 235–239 (2016)CrossRef O. Maalej, J. Merigeon, B. Boulard, M. Girtan, Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement. Opt. Mater. 60, 235–239 (2016)CrossRef
Metadata
Title
New Trends in Solar Cells Research
Author
Mihaela Girtan
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67337-0_3