Skip to main content
Top

2021 | OriginalPaper | Chapter

Newton-SOR with Quadrature Scheme for Solving Nonlinear Fredholm Integral Equations

Authors : L. H. Ali, J. Sulaiman, A. Saudi, M. M. Xu

Published in: Computational Science and Technology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a numerical method of Newton Successive Over-Relaxation (NSOR) iteration with quadrature scheme to approximate the solution of nonlinear Fredholm integral equations. Here, the quadrature scheme is used to derive the approximation equations of nonlinear Fredholm integral equations in order to develop a system of nonlinear equations. NSOR consists of two parts. In the first part, Newton’s method is used to linearize the developed system of nonlinear equations. Then, in the second part, SOR iteration is used to solve the corresponding system of linear equations to get the approximate solution. In order to validate the performance of the proposed method, Newton-Jacobi (NJacobi) and Newton-Gauss–Seidel (NGS) are used as the reference methods to perform the comparative analysis. Also, some numerical examples are presented to illustrate the validity of the NSOR.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li H, Huang J (2016) A novel approach to solve nonlinear Fredholm integral equations of the second kind. SpringerPlus 5(154):1–9 Li H, Huang J (2016) A novel approach to solve nonlinear Fredholm integral equations of the second kind. SpringerPlus 5(154):1–9
2.
go back to reference Borzabadi AH, Fard OS (2009) Numerical scheme for a class of nonlinear Fredholm integral equations of the second kind. J Comput Appl Math 232:449–454MathSciNetCrossRef Borzabadi AH, Fard OS (2009) Numerical scheme for a class of nonlinear Fredholm integral equations of the second kind. J Comput Appl Math 232:449–454MathSciNetCrossRef
3.
go back to reference Mohedul HMd, Abdul MMd (2017) Solving nonlinear integral equations by using Adomian decomposition method. J Appl Comput Math 6(2):1–4 Mohedul HMd, Abdul MMd (2017) Solving nonlinear integral equations by using Adomian decomposition method. J Appl Comput Math 6(2):1–4
4.
go back to reference Das P, Nelakanti G (2018) Error analysis of polynomial-based multi-projection methods for a class of nonlinear fredholm integral equations. J Appl Math Comput 56:1–24MathSciNetCrossRef Das P, Nelakanti G (2018) Error analysis of polynomial-based multi-projection methods for a class of nonlinear fredholm integral equations. J Appl Math Comput 56:1–24MathSciNetCrossRef
5.
go back to reference Katani R (2018) Numerical solution of the Fredholm integral equations with a quadrature method. SeMA J 76:271–276MathSciNetCrossRef Katani R (2018) Numerical solution of the Fredholm integral equations with a quadrature method. SeMA J 76:271–276MathSciNetCrossRef
6.
go back to reference Maturi DA (2019) The successive approximation method for solving nonlinear Fredholm integral equation of the second kind using maple. Adv Pure Math 9:832–843CrossRef Maturi DA (2019) The successive approximation method for solving nonlinear Fredholm integral equation of the second kind using maple. Adv Pure Math 9:832–843CrossRef
7.
go back to reference Awawdeh F, Smail L (2020) Convergence analysis of a highly accurate nystrom scheme for fredholm integral equations. Appl Numerical Math 152:231–242MathSciNetCrossRef Awawdeh F, Smail L (2020) Convergence analysis of a highly accurate nystrom scheme for fredholm integral equations. Appl Numerical Math 152:231–242MathSciNetCrossRef
8.
go back to reference Najafi E (2020) Nystrom-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations. J Comput Appl Math 368:1–13MathSciNetCrossRef Najafi E (2020) Nystrom-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations. J Comput Appl Math 368:1–13MathSciNetCrossRef
9.
go back to reference Amiri S, Hajipour M, Baleanu D (2020) On accurate solution of the Fredholm integral equations of the second kind. Appl Numerical Math 150:478–490MathSciNetCrossRef Amiri S, Hajipour M, Baleanu D (2020) On accurate solution of the Fredholm integral equations of the second kind. Appl Numerical Math 150:478–490MathSciNetCrossRef
10.
go back to reference Allahviranloo T, Ghanbari M (2011) Discrete homotopy analysis method for the nonlinear Fredholm integral equations. Ain Shams Eng J 2:133–140CrossRef Allahviranloo T, Ghanbari M (2011) Discrete homotopy analysis method for the nonlinear Fredholm integral equations. Ain Shams Eng J 2:133–140CrossRef
11.
go back to reference Young DM (1954) Iterative methods for solving partial difference equations of elliptic type. Trans Am Math Soc 76(1):92–111MathSciNetCrossRef Young DM (1954) Iterative methods for solving partial difference equations of elliptic type. Trans Am Math Soc 76(1):92–111MathSciNetCrossRef
12.
go back to reference Ali LH, Sulaiman J, Hashim SRM (2018) SOR iterative method with Simpson’s 1/3 rule for the numerical solution of fuzzy second kind Fredholm integral equations. In: Journal of Physics: Conference Series, International Conference on Fundamental & Applied Sciences, A Conference of World Engineering, Science & Technology Congress. IOP Publishing Ltd, Kuala Lumpur, Malaysia, pp 1–9 Ali LH, Sulaiman J, Hashim SRM (2018) SOR iterative method with Simpson’s 1/3 rule for the numerical solution of fuzzy second kind Fredholm integral equations. In: Journal of Physics: Conference Series, International Conference on Fundamental & Applied Sciences, A Conference of World Engineering, Science & Technology Congress. IOP Publishing Ltd, Kuala Lumpur, Malaysia, pp 1–9
13.
go back to reference Ali LH, Sulaiman J, Hashim SRM (2018) Numerical solution of SOR iterative method for fuzzy Fredholm integral equations of second kind. In: Proceeding of the international conference on mathematics, engineering and industrial applications. AIP conference Proceedings, Kuala Lumpur, Malaysia, pp 1–8 Ali LH, Sulaiman J, Hashim SRM (2018) Numerical solution of SOR iterative method for fuzzy Fredholm integral equations of second kind. In: Proceeding of the international conference on mathematics, engineering and industrial applications. AIP conference Proceedings, Kuala Lumpur, Malaysia, pp 1–8
14.
15.
go back to reference Sunarto A, Sulaiman J, Saudi A (2014) Implicit finite difference solution for time-factional diffusion equations using AOR method. In: Journal of Physics: Conference Series, Volume 495, 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics. IOP Publishing Ltd, Jakarta, Indonesia, pp 1–9 Sunarto A, Sulaiman J, Saudi A (2014) Implicit finite difference solution for time-factional diffusion equations using AOR method. In: Journal of Physics: Conference Series, Volume 495, 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics. IOP Publishing Ltd, Jakarta, Indonesia, pp 1–9
16.
go back to reference Chew JVL, Sulaiman J (2017) Newton-SOR iterative method for solving the two-dimensional porous medium equations. J Fundamental Appl Sci 9(6S):384–394CrossRef Chew JVL, Sulaiman J (2017) Newton-SOR iterative method for solving the two-dimensional porous medium equations. J Fundamental Appl Sci 9(6S):384–394CrossRef
17.
go back to reference Sulaiman J, Hasan MK (2012) Newton-EGMSOR methods for solution of second order two-point nonlinear boundary value problems. J Math Syst Sci 2:185–190 Sulaiman J, Hasan MK (2012) Newton-EGMSOR methods for solution of second order two-point nonlinear boundary value problems. J Math Syst Sci 2:185–190
18.
go back to reference Maleknejad K, Nediasl K (2011) Application of sinc-collocation method for solving a class of nonlinear fredholm integral equations. Comput Math Appl 62:3292–3303MathSciNetCrossRef Maleknejad K, Nediasl K (2011) Application of sinc-collocation method for solving a class of nonlinear fredholm integral equations. Comput Math Appl 62:3292–3303MathSciNetCrossRef
19.
go back to reference Sahu PK, Ray SS (2013) Numerical approximate solutions of nonlinear fredholm integral equations of second kind using B-spline wavelets and variational iteration method. Comput Model Eng Sci 93(2):91–112MathSciNetMATH Sahu PK, Ray SS (2013) Numerical approximate solutions of nonlinear fredholm integral equations of second kind using B-spline wavelets and variational iteration method. Comput Model Eng Sci 93(2):91–112MathSciNetMATH
20.
go back to reference Nadir M, Khirani A (2016) Adapted Newton-Kantorovich methods for nonlinear integral equations. J Math Statistics 12(3):176–181CrossRef Nadir M, Khirani A (2016) Adapted Newton-Kantorovich methods for nonlinear integral equations. J Math Statistics 12(3):176–181CrossRef
21.
go back to reference Saudi A, Sulaiman J (2016) Path planning simulation using harmonic potential fields through four-point-EDGSOR method via 9-Point Laplacian. Jurnal Teknologi 78(8–2):12–24 Saudi A, Sulaiman J (2016) Path planning simulation using harmonic potential fields through four-point-EDGSOR method via 9-Point Laplacian. Jurnal Teknologi 78(8–2):12–24
22.
go back to reference Akhir MKM, Othman M, Sulaiman J, Majid ZA, Suleiman M (2011) The four point-EDGMSOR iterative method for solution of 2D Helmholtz equations. Commun Comput Information Sci 253(3):218–227 Akhir MKM, Othman M, Sulaiman J, Majid ZA, Suleiman M (2011) The four point-EDGMSOR iterative method for solution of 2D Helmholtz equations. Commun Comput Information Sci 253(3):218–227
23.
go back to reference Dahalan AA, Sulaiman J, Muthuvalu MS (2014) Performance of HSAGE method with Seikkala derivative for 2-D fuzzy poisson equation. Appl Math Sci 8(17–20):885–899 Dahalan AA, Sulaiman J, Muthuvalu MS (2014) Performance of HSAGE method with Seikkala derivative for 2-D fuzzy poisson equation. Appl Math Sci 8(17–20):885–899
Metadata
Title
Newton-SOR with Quadrature Scheme for Solving Nonlinear Fredholm Integral Equations
Authors
L. H. Ali
J. Sulaiman
A. Saudi
M. M. Xu
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4069-5_27

Premium Partner