Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

05-02-2023 | Original Article

Node embedding with capsule generation-embedding network

Authors: Jinghong Wang, Daipeng Zhang, Jianguo Wei, Shanshan Zhang, Wei Wang

Published in: International Journal of Machine Learning and Cybernetics

Login to get access
share
SHARE

Abstract

Achieving interpretable embedding of real network has a significant impact on network analysis tasks. However, majority of node embedding-based methods seldom consider the rationality and interpretability of node embedding. Although graph attention networks-based approaches have been employed to improve the interpretability of node embedding, they are implicitly specifying different weights to different nodes in a neighborhood. In this study, we present node embedding with capsule generation-embedding network(CapsGE), which is a novel capsule network-based network architecture, and uses node density based on the definition of uncertainty of node community belongings to explicitly assign different weights to different nodes in a neighborhood. In addition, this model uses the proposed cognitive reasoning mechanism for the weighted features to achieve rational and interpretable embedding of nodes. The performance of the method is assessed on node classification task. The experimental results demonstrate its advantages over other methods.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Show more products
Literature
1.
go back to reference Zhou J, Liu L, Wei W, Fan J (2022) Network representation learning: from preprocessing, feature extraction to node embedding. ACM Comput Surv 55(2):1–35 CrossRef Zhou J, Liu L, Wei W, Fan J (2022) Network representation learning: from preprocessing, feature extraction to node embedding. ACM Comput Surv 55(2):1–35 CrossRef
2.
go back to reference Palomares I, Porcel C, Pizzato L, Guy I, Herrera-Viedma E (2021) Reciprocal recommender systems: analysis of state-of-art literature, challenges and opportunities towards social recommendation. Inf Fusion 69:103–127 CrossRef Palomares I, Porcel C, Pizzato L, Guy I, Herrera-Viedma E (2021) Reciprocal recommender systems: analysis of state-of-art literature, challenges and opportunities towards social recommendation. Inf Fusion 69:103–127 CrossRef
3.
go back to reference Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24 MathSciNetCrossRef Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24 MathSciNetCrossRef
4.
go back to reference Muzio G, O’Bray L, Borgwardt K (2021) Biological network analysis with deep learning. Brief Bioinform 22(2):1515–1530 CrossRef Muzio G, O’Bray L, Borgwardt K (2021) Biological network analysis with deep learning. Brief Bioinform 22(2):1515–1530 CrossRef
5.
go back to reference Hoffman SC, Chenthamarakshan V, Wadhawan K, Chen PY, Das P (2022) Optimizing molecules using efficient queries from property evaluations. Nat Mach Intell 4(1):21–31 CrossRef Hoffman SC, Chenthamarakshan V, Wadhawan K, Chen PY, Das P (2022) Optimizing molecules using efficient queries from property evaluations. Nat Mach Intell 4(1):21–31 CrossRef
6.
go back to reference Wei W, Zhang Q, Liu L (2020) Bitcoin transaction forecasting with deep network representation learning. IEEE Trans Emerg Top Comput 9(3):1359–1371 CrossRef Wei W, Zhang Q, Liu L (2020) Bitcoin transaction forecasting with deep network representation learning. IEEE Trans Emerg Top Comput 9(3):1359–1371 CrossRef
7.
go back to reference Perozzi B, Al-Rfou R, Deepwalk Skiena S (2014) Online learning of social representation. Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 701–710 CrossRef Perozzi B, Al-Rfou R, Deepwalk Skiena S (2014) Online learning of social representation. Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 701–710 CrossRef
8.
go back to reference Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco. ACM, New York, pp 855–864 CrossRef Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco. ACM, New York, pp 855–864 CrossRef
9.
go back to reference Ribeiro LFR, Saverese PHP, Figueiredo DR (2017) Struc2vec: Learning node representations from structural identit. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, Halifax, Canada. ACM, New York, pp 385–394 Ribeiro LFR, Saverese PHP, Figueiredo DR (2017) Struc2vec: Learning node representations from structural identit. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, Halifax, Canada. ACM, New York, pp 385–394
10.
go back to reference Huang X, Li J, Hu X (2017) Label informed attributed network embedding. Rroceedings of the tenth ACM international conference on web search and data mining, Cambridge, United Kingdom. ACM, New York, pp 731–739 Huang X, Li J, Hu X (2017) Label informed attributed network embedding. Rroceedings of the tenth ACM international conference on web search and data mining, Cambridge, United Kingdom. ACM, New York, pp 731–739
11.
go back to reference Yang C, Liu Z, Zhao D, Sun M, Chang E (2015) Network representation learning with rich text information. Proceedings of the twenty-fourth international joint conference on artificial intelligence; Buenos Aires, Argentina. AAAI Press, Menlo Park, pp 2111–2117 Yang C, Liu Z, Zhao D, Sun M, Chang E (2015) Network representation learning with rich text information. Proceedings of the twenty-fourth international joint conference on artificial intelligence; Buenos Aires, Argentina. AAAI Press, Menlo Park, pp 2111–2117
12.
go back to reference Velikovi P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: Proceedings of the 6th International Conf. on Learning Representation (ICLR), Vancouver, Canada, pp 44–51 Velikovi P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: Proceedings of the 6th International Conf. on Learning Representation (ICLR), Vancouver, Canada, pp 44–51
13.
go back to reference Xie L, Huang H, Du Q (2022) A hierarchical generative embedding model for influence maximization in attributed social networks. Appl Sci 12(3):1321 CrossRef Xie L, Huang H, Du Q (2022) A hierarchical generative embedding model for influence maximization in attributed social networks. Appl Sci 12(3):1321 CrossRef
14.
go back to reference Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-supervised learning with graph embedding. In: Proceedings of the 33nd International Conference on Machine Learning(ICML), New York City, NY, USA, pp 40–48 Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-supervised learning with graph embedding. In: Proceedings of the 33nd International Conference on Machine Learning(ICML), New York City, NY, USA, pp 40–48
15.
go back to reference Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems (NeurIPS), Barcelona, Spain, pp 3837–3845 Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems (NeurIPS), Barcelona, Spain, pp 3837–3845
16.
go back to reference Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on graphs and manifolds using mixture model CNNS. Processing of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE Computer Society, New York, pp 5115–5124 Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on graphs and manifolds using mixture model CNNS. Processing of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE Computer Society, New York, pp 5115–5124
17.
go back to reference Li C, Wang S, Yang D, Li Z, Yang Y, Zhang X, Zhou J (2020) Graph attention auto-encoders. 32nd IEEE international conference on tools with artificial intelligence(ICTAI); Baltimore, USA. IEEE, New York, pp 163–179 Li C, Wang S, Yang D, Li Z, Yang Y, Zhang X, Zhou J (2020) Graph attention auto-encoders. 32nd IEEE international conference on tools with artificial intelligence(ICTAI); Baltimore, USA. IEEE, New York, pp 163–179
18.
go back to reference Cai B, Zeng L, Wang Y, Li H, Hu Y (2019) Community detection method based on node density, degree centrality, and K-means clustering in complex network. Entropy 21(12):1145 MathSciNetCrossRef Cai B, Zeng L, Wang Y, Li H, Hu Y (2019) Community detection method based on node density, degree centrality, and K-means clustering in complex network. Entropy 21(12):1145 MathSciNetCrossRef
19.
go back to reference Xu W, Yuan K, Li W, Ding W (2022) An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution. IEEE Trans Emerg Top Comput Intell 1:1–13 Xu W, Yuan K, Li W, Ding W (2022) An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution. IEEE Trans Emerg Top Comput Intell 1:1–13
20.
go back to reference Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. Proceedings of the international conference on artificial neural networks. Springer, Berlin, pp 44–51 Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. Proceedings of the international conference on artificial neural networks. Springer, Berlin, pp 44–51
21.
go back to reference Patrick MK, Adekoya AF, Mighty AA, Edward BY (2022) Capsule networks-a survey. J King Saud Univ-Comput Inf Sci 34(1):1295–1310 Patrick MK, Adekoya AF, Mighty AA, Edward BY (2022) Capsule networks-a survey. J King Saud Univ-Comput Inf Sci 34(1):1295–1310
22.
go back to reference Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. Processing of the 24th international conference on world wide web, Florence, Italy. ACM, New York, pp 1067–1077 CrossRef Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. Processing of the 24th international conference on world wide web, Florence, Italy. ACM, New York, pp 1067–1077 CrossRef
23.
go back to reference Li J, Zhu J, Zhang B (2016) Discriminative deep random walk for network classification. Proceedings of the 54th annual meeting of the association for computational linguistics, Berlin, Germany. The Association for Computer Linguistics, Berlin, pp 1004–1013 Li J, Zhu J, Zhang B (2016) Discriminative deep random walk for network classification. Proceedings of the 54th annual meeting of the association for computational linguistics, Berlin, Germany. The Association for Computer Linguistics, Berlin, pp 1004–1013
24.
go back to reference Chen J, Zhang Q, Huang X (2016) Incorporate group information to enhance network embedding. Rroceedings of the 25th ACM international on conference on information and knowledge management (CIKM), Indianapolis, USA. ACM, New York, pp 1901–1904 Chen J, Zhang Q, Huang X (2016) Incorporate group information to enhance network embedding. Rroceedings of the 25th ACM international on conference on information and knowledge management (CIKM), Indianapolis, USA. ACM, New York, pp 1901–1904
25.
go back to reference Li C, Li Z, Wang S, Yang Y, Zhang X, Zhou J (2017) Semi-supervised network embedding. Proceedings of the database systems for advanced applications-22nd international conference, Suzhou, China. Springer, Berlin, pp 131–147 Li C, Li Z, Wang S, Yang Y, Zhang X, Zhou J (2017) Semi-supervised network embedding. Proceedings of the database systems for advanced applications-22nd international conference, Suzhou, China. Springer, Berlin, pp 131–147
26.
go back to reference Xu W, Li W (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379 MathSciNetCrossRef Xu W, Li W (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379 MathSciNetCrossRef
27.
go back to reference Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J (2018) Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. Proceedings of the 11th ACM international conference on web search and data mining; Marina Del Rey, CA, USA. ACM, New York, pp 459–467 Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J (2018) Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. Proceedings of the 11th ACM international conference on web search and data mining; Marina Del Rey, CA, USA. ACM, New York, pp 459–467
28.
go back to reference Wang D, Cui P, Zhu W (2016) Structural deep network embedding. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 1225–1234 CrossRef Wang D, Cui P, Zhu W (2016) Structural deep network embedding. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 1225–1234 CrossRef
29.
go back to reference Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. Proceedings of the13th AAAI conference on artificial intelligence; Phoenix, Arizona, USA. AAAI Press, Menlo Park, pp 1145–152 Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. Proceedings of the13th AAAI conference on artificial intelligence; Phoenix, Arizona, USA. AAAI Press, Menlo Park, pp 1145–152
30.
go back to reference Wang C, Pan S, Long G, Zhu X, Jiang J (2017) Mgae: marginalized graph auto-encoder for graph clustering. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 889–898 Wang C, Pan S, Long G, Zhu X, Jiang J (2017) Mgae: marginalized graph auto-encoder for graph clustering. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 889–898
31.
go back to reference Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, pp 1–14 Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, pp 1–14
32.
go back to reference Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NeurIPS); Long Beach, USA, pp 1024–1034 Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NeurIPS); Long Beach, USA, pp 1024–1034
33.
go back to reference Nguyen DQ, Nguyen TD, Phung DA (2020) A self-attention network based node embedding model. Proceedings of the machine learning and knowledge discovery in databases-european conference, Ghent, Belgium. Springer, Berlin, pp 364–377 Nguyen DQ, Nguyen TD, Phung DA (2020) A self-attention network based node embedding model. Proceedings of the machine learning and knowledge discovery in databases-european conference, Ghent, Belgium. Springer, Berlin, pp 364–377
34.
go back to reference Velickovic P, Fedus W, Hamilton WL, Li P, Bengio Y, Hjelm RD (2019) Deep graph infomax. ICLR (Poster) 2(3):4 Velickovic P, Fedus W, Hamilton WL, Li P, Bengio Y, Hjelm RD (2019) Deep graph infomax. ICLR (Poster) 2(3):4
35.
go back to reference Hasanzadeh A, Hajiramezanali E, Narayanan K, Duffield N, Zhou M, Qian X (2019) Semi-implicit graph variational auto-encoders. In: Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, pp 10711–10722 Hasanzadeh A, Hajiramezanali E, Narayanan K, Duffield N, Zhou M, Qian X (2019) Semi-implicit graph variational auto-encoders. In: Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, pp 10711–10722
36.
go back to reference Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Guo M (2018) GraphGAN: graph representation learning with generative adversarial nets. Proceedings of the thirty-second AAAI conference on artificial intelligence, Louisiana, USA. AAAI Press, Menlo Park, pp 2508–2515 Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Guo M (2018) GraphGAN: graph representation learning with generative adversarial nets. Proceedings of the thirty-second AAAI conference on artificial intelligence, Louisiana, USA. AAAI Press, Menlo Park, pp 2508–2515
37.
go back to reference Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Guo M (2019) Learning graph representation with generative adversarial nets. IEEE Trans Knowl Data Eng 33(8):3090–3103 CrossRef Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Guo M (2019) Learning graph representation with generative adversarial nets. IEEE Trans Knowl Data Eng 33(8):3090–3103 CrossRef
38.
go back to reference Dai Q, Li Q, Tang J, Wang D (2018) Adversarial network embedding. Proceedings of the thirty-second AAAI conference on artificial intelligence; Louisiana, USA. AAAI Press, Menlo Park, pp 2167–2174 Dai Q, Li Q, Tang J, Wang D (2018) Adversarial network embedding. Proceedings of the thirty-second AAAI conference on artificial intelligence; Louisiana, USA. AAAI Press, Menlo Park, pp 2167–2174
39.
go back to reference Zhu S, Li J, Peng H, Wang S, He L (2021) Adversarial directed graph embedding. Proceedings of the thirty-fifth AAAI conference on artificial intelligence. AAAI Press, Menlo Park, pp 4741–4748 Zhu S, Li J, Peng H, Wang S, He L (2021) Adversarial directed graph embedding. Proceedings of the thirty-fifth AAAI conference on artificial intelligence. AAAI Press, Menlo Park, pp 4741–4748
40.
go back to reference Li W, Zhou H, Xu W, Wang XZ, Pedrycz W (2022) Interval dominance-based feature selection for interval-valued ordered data. IEEE Trans Neural Netw Learn Syst 1:1–15 Li W, Zhou H, Xu W, Wang XZ, Pedrycz W (2022) Interval dominance-based feature selection for interval-valued ordered data. IEEE Trans Neural Netw Learn Syst 1:1–15
41.
go back to reference Xu W, Yuan KY, Li W (2022) Dynamic updating approximations of local generalized multigranulation neighborhood rough set. Appl Intell 52(8):9148–9173 CrossRef Xu W, Yuan KY, Li W (2022) Dynamic updating approximations of local generalized multigranulation neighborhood rough set. Appl Intell 52(8):9148–9173 CrossRef
42.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley B, Ozair S, Courville A, Bengio Y (2014) Adversarial directed graph embedding. In: Processing of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems, Quebec, Canada, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley B, Ozair S, Courville A, Bengio Y (2014) Adversarial directed graph embedding. In: Processing of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems, Quebec, Canada, pp 2672–2680
43.
go back to reference Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D (2020) A capsule network-based model for learning node embedding. Processing of the 29th ACM international conference on information and knowledge management; virtual event, Ireland. ACM, New York, pp 3313–3316 Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D (2020) A capsule network-based model for learning node embedding. Processing of the 29th ACM international conference on information and knowledge management; virtual event, Ireland. ACM, New York, pp 3313–3316
44.
go back to reference Manoharan JS (2021) Capsule network algorithm for performance optimization of text classification. J Soft Comput Paradigm (JSCP) 3(1):1–9 CrossRef Manoharan JS (2021) Capsule network algorithm for performance optimization of text classification. J Soft Comput Paradigm (JSCP) 3(1):1–9 CrossRef
45.
go back to reference Goldani MH, Momtazi S, Safabakhsh R (2021) Detecting fake news with capsule neural networks. Appl Soft Comput 101:106991 CrossRef Goldani MH, Momtazi S, Safabakhsh R (2021) Detecting fake news with capsule neural networks. Appl Soft Comput 101:106991 CrossRef
46.
go back to reference Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Processing of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NeurIPS); Long Beach, USA, pp 3856–3866 Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Processing of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NeurIPS); Long Beach, USA, pp 3856–3866
47.
go back to reference Hinton GE, Sabour S, Frosst N (2018) Matrix capsules with EM routing. In: Proceedings of the 6th International Conference on Learning Representations(ICLR); Vancouver, BC, Canada, pp 1–15 Hinton GE, Sabour S, Frosst N (2018) Matrix capsules with EM routing. In: Proceedings of the 6th International Conference on Learning Representations(ICLR); Vancouver, BC, Canada, pp 1–15
48.
go back to reference Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. AI Mag 19(3):93–93 Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. AI Mag 19(3):93–93
49.
go back to reference Jean S, Cho K, Memisevic R, Bengio Y (2015) On using very large target vocabulary for neural machine translation. Assoc Comput Linguist (ACL) 1(1):1–10 Jean S, Cho K, Memisevic R, Bengio Y (2015) On using very large target vocabulary for neural machine translation. Assoc Comput Linguist (ACL) 1(1):1–10
50.
go back to reference Van der Maaten L, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11):2580–2605 MATH Van der Maaten L, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11):2580–2605 MATH
Metadata
Title
Node embedding with capsule generation-embedding network
Authors
Jinghong Wang
Daipeng Zhang
Jianguo Wei
Shanshan Zhang
Wei Wang
Publication date
05-02-2023
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01779-9