Skip to main content
Top
Published in: Russian Journal of Nondestructive Testing 10/2019

01-10-2019 | THERMAL METHODS

Non-Destructive Infrared Lock-in Thermal Tests: Update on the Current Defect Detectability

Authors: António Ramos Silva, Mário Vaz, Sofia Ribeirinho Leite, Joaquim Mendes

Published in: Russian Journal of Nondestructive Testing | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Non-destructive testing (NDT) is one of the best alternatives to perform inspections and maintenance operations in aerospace and aeronautics industries. In Lock-in Thermal Tests (LTT) the stimulation is modulated in a sinusoidal wave using mechanical loads, ultrasounds, microwaves or, as in this work, visible light through halogen lamps. This work assesses the influence of the parameters of LTT, such as defect geometry, cycle period, and number of cycles, interpolation method, and the type of image to identify the sensitivity of the LTT (parameter c). Several samples were manufactured with precise notches to simulate defects (slots). And performed several LTT in a controlled environment and with a custom jig to secure the samples. The performed tests permitted the analysis of various results for numerous types of controlled situations and defects, such as the slot width, depth, and cycle period. This work compared the number of cycles used during the test (1–15), the interpolation method (Harmonic or DFT) and the type of analysis (phase or amplitude). The cycle period indirectly defines the amount of energy applied during the test; therefore, it was expected to have a great impact in the results. Shorter cycles produced lower thermal differences, while longer cycles resulted in blurred images. The type of image was also found to be one of the most important setting, with the phase delay analysis presenting a higher differentiation of defects and its boundaries. The results from the variation of the number of cycles revealed these should be kept between three and nine. Additionally, the optical stimulation may also be a decisive setting, depending the defect geometry. As a major conclusion, the current LTT can detect defects with a width to depth ratio of 1.25, far less than 2.0, as is stated by the current literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Roberts, C.C., Jr., Infrared temperature measurement applied to engineering design analysis, Am. Soc. Mech. Eng., paper no. 75-WA/TM-3, 1975. Roberts, C.C., Jr., Infrared temperature measurement applied to engineering design analysis, Am. Soc. Mech. Eng., paper no. 75-WA/TM-3, 1975.
2.
go back to reference Vavilov, V.P., Thermal nondestructive testing of materials and products: a review, Russ. J. Nondestr. Test., 2017, vol. 53, no. 10, pp. 707–730.CrossRef Vavilov, V.P., Thermal nondestructive testing of materials and products: a review, Russ. J. Nondestr. Test., 2017, vol. 53, no. 10, pp. 707–730.CrossRef
3.
go back to reference Mountain, D.S. and Webber, J.M.B., Stress pattern analysis by thermal emission (SPATE), in Fourth Eur. Electro-Opt. Conf., 1979, vol. 164, pp. 189–196. Mountain, D.S. and Webber, J.M.B., Stress pattern analysis by thermal emission (SPATE), in Fourth Eur. Electro-Opt. Conf., 1979, vol. 164, pp. 189–196.
4.
go back to reference Kuo, P.K., Feng, Z.J., Ahmed, T., Favro, L.D., Thomas, R.L., and Hartikainen, J., Parallel thermal wave imaging using a vector lock-in video technique, in Photoacoustic and Photothermal Phenomena, vol. 58, Hess, P. and Pelzl, J., Eds., Berlin–Heidelberg: Springer, 1988, pp. 415–418.CrossRef Kuo, P.K., Feng, Z.J., Ahmed, T., Favro, L.D., Thomas, R.L., and Hartikainen, J., Parallel thermal wave imaging using a vector lock-in video technique, in Photoacoustic and Photothermal Phenomena, vol. 58, Hess, P. and Pelzl, J., Eds., Berlin–Heidelberg: Springer, 1988, pp. 415–418.CrossRef
5.
go back to reference Vavilov, V.P. and Nesteruk, D.A., Comparative analysis of optical and ultrasonic stimulation of flaws in composite materials, Russ. J. Nondestr. Test., 2010, vol. 46, no. 2, pp. 147–150.CrossRef Vavilov, V.P. and Nesteruk, D.A., Comparative analysis of optical and ultrasonic stimulation of flaws in composite materials, Russ. J. Nondestr. Test., 2010, vol. 46, no. 2, pp. 147–150.CrossRef
6.
go back to reference Breitenstein, O., Rakotoniaina, J., Altmann, F., Riediger, T., and Gradhand, M., New developments in IR lock-in thermography, in Proc. 30th ISTFA, 2004, pp. 595–599. Breitenstein, O., Rakotoniaina, J., Altmann, F., Riediger, T., and Gradhand, M., New developments in IR lock-in thermography, in Proc. 30th ISTFA, 2004, pp. 595–599.
7.
go back to reference Datong Wu, G.B., Lock-in thermography for nondestructive evaluation of materials, Rev. Gén.Therm., 1998, vol. 37, pp. 693–703. Datong Wu, G.B., Lock-in thermography for nondestructive evaluation of materials, Rev. Gén.Therm., 1998, vol. 37, pp. 693–703.
8.
go back to reference Muzaffar, K., Tuli, S., and Koul, S., Beam width estimation of microwave antennas using lock-in infrared thermography, Infrared Phys. Technol., 2015, vol. 72, pp. 244–248.CrossRef Muzaffar, K., Tuli, S., and Koul, S., Beam width estimation of microwave antennas using lock-in infrared thermography, Infrared Phys. Technol., 2015, vol. 72, pp. 244–248.CrossRef
9.
go back to reference Giorleo, G., Meola, C., and Squillace, A., Analysis of defective carbon-epoxy by means of lock-in thermography, Res. Nondestr. Eval., 2000, vol. 12, pp. 241–250.CrossRef Giorleo, G., Meola, C., and Squillace, A., Analysis of defective carbon-epoxy by means of lock-in thermography, Res. Nondestr. Eval., 2000, vol. 12, pp. 241–250.CrossRef
10.
go back to reference Choi, M., Kang, K., Park, J., Kim, W., and Kim, K., Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography, NDT & E Int., 2008, vol. 41, no. 2, pp. 119–124.CrossRef Choi, M., Kang, K., Park, J., Kim, W., and Kim, K., Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography, NDT & E Int., 2008, vol. 41, no. 2, pp. 119–124.CrossRef
11.
go back to reference Danjoux, R., Merienne, E., Beaudoin, J.L., and Egee, M., Numerical system for infrared scanners and application to the subsurface control of materials by photothermal radiometry, Proc. SPIE, 1986, vol. 590, pp. 285–292.CrossRef Danjoux, R., Merienne, E., Beaudoin, J.L., and Egee, M., Numerical system for infrared scanners and application to the subsurface control of materials by photothermal radiometry, Proc. SPIE, 1986, vol. 590, pp. 285–292.CrossRef
12.
go back to reference Quek, S., Almond, D.P., Nelson, L., and Barden, T., A novel and robust thermal wave signal reconstruction technique for defect detection in lock-in thermography, Meas. Sci. Technol., 2005, vol. 16, no. 5, pp. 1223–1233.CrossRef Quek, S., Almond, D.P., Nelson, L., and Barden, T., A novel and robust thermal wave signal reconstruction technique for defect detection in lock-in thermography, Meas. Sci. Technol., 2005, vol. 16, no. 5, pp. 1223–1233.CrossRef
13.
go back to reference Umar, M.Z., Vavilov, V.P., Abdullah, H., and Ariffin, A.K., Detecting low-energy impact damages in carbon-carbon composites by ultrasonic infrared thermography, Russ. J. Nondestr. Test., 2017, vol. 53, no. 7, pp. 530–538.CrossRef Umar, M.Z., Vavilov, V.P., Abdullah, H., and Ariffin, A.K., Detecting low-energy impact damages in carbon-carbon composites by ultrasonic infrared thermography, Russ. J. Nondestr. Test., 2017, vol. 53, no. 7, pp. 530–538.CrossRef
14.
go back to reference Gleiter, A., Riegert, G., Zweschper, T., and Busse, G., Ultrasound lock-in thermography for advanced depth resolved defect selective imaging, Insight, 2007, vol. 49, no. 5, pp. 272–274.CrossRef Gleiter, A., Riegert, G., Zweschper, T., and Busse, G., Ultrasound lock-in thermography for advanced depth resolved defect selective imaging, Insight, 2007, vol. 49, no. 5, pp. 272–274.CrossRef
15.
go back to reference Delanthabettu, S., Menaka, M., Venkatraman, B., and Raj, B., Defect depth quantification using lock-in thermography, Quant. Infrared Thermogr. J., 2015, no. ahead-of-print, pp. 1–16. Delanthabettu, S., Menaka, M., Venkatraman, B., and Raj, B., Defect depth quantification using lock-in thermography, Quant. Infrared Thermogr. J., 2015, no. ahead-of-print, pp. 1–16.
16.
go back to reference Sharath, D., Menaka, M., and Venkatraman, B., Effect of defect size on defect depth quantification in pulsed thermography, Meas. Sci. Technol., 2013, vol. 24, no. 12, p. 125 205.CrossRef Sharath, D., Menaka, M., and Venkatraman, B., Effect of defect size on defect depth quantification in pulsed thermography, Meas. Sci. Technol., 2013, vol. 24, no. 12, p. 125 205.CrossRef
17.
go back to reference Bennett CA, P.R. Jr., Thermal wave interferometry: a potential application of the photoacoustic effect, Appl. Opt., 1982, vol. 21, pp. 49–54.CrossRef Bennett CA, P.R. Jr., Thermal wave interferometry: a potential application of the photoacoustic effect, Appl. Opt., 1982, vol. 21, pp. 49–54.CrossRef
18.
go back to reference Ibarra-Castanedo, C. and Maldague, X.P.V., Interactive methodology for optimized defect characterization by quantitative pulsed phase thermography, Res. Nondestr. Eval., 2005, vol. 16, no. 4, pp. 175–193.CrossRef Ibarra-Castanedo, C. and Maldague, X.P.V., Interactive methodology for optimized defect characterization by quantitative pulsed phase thermography, Res. Nondestr. Eval., 2005, vol. 16, no. 4, pp. 175–193.CrossRef
19.
go back to reference Maierhofer, C., Reischel, M., Röllig, M., Myrach, P., Steinfurth, H., and Kunert, M., Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Composites: Part B, 2014, vol. 57, pp. 35–46.CrossRef Maierhofer, C., Reischel, M., Röllig, M., Myrach, P., Steinfurth, H., and Kunert, M., Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Composites: Part B, 2014, vol. 57, pp. 35–46.CrossRef
20.
go back to reference Dudzik, S., Analysis of the accuracy of a neural algorithm for defect depth estimation using PCA processing from active thermography data, Infrared Phys. Technol., 2013, vol. 56, pp. 1–7.CrossRef Dudzik, S., Analysis of the accuracy of a neural algorithm for defect depth estimation using PCA processing from active thermography data, Infrared Phys. Technol., 2013, vol. 56, pp. 1–7.CrossRef
21.
go back to reference Dudzik, S., Characterization of material defects using active thermography and an artificial neural network., Metrol. Meas. Syst., 2013, vol. 20, no. 3, pp. 491–500.CrossRef Dudzik, S., Characterization of material defects using active thermography and an artificial neural network., Metrol. Meas. Syst., 2013, vol. 20, no. 3, pp. 491–500.CrossRef
22.
go back to reference Ishikawa, M., Hatta, H., Habuka, Y., Fukui, R., and Utsunomiya, S., Detecting deeper defects using pulse phase thermography, Infrared Phys. Technol., 2013, vol. 57, pp. 42–49.CrossRef Ishikawa, M., Hatta, H., Habuka, Y., Fukui, R., and Utsunomiya, S., Detecting deeper defects using pulse phase thermography, Infrared Phys. Technol., 2013, vol. 57, pp. 42–49.CrossRef
23.
go back to reference Montanini, R., Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography, Infrared Phys. Technol., 2010, vol. 53, pp. 363–371.CrossRef Montanini, R., Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography, Infrared Phys. Technol., 2010, vol. 53, pp. 363–371.CrossRef
24.
go back to reference Mulaveesala, R. and Tuli, S., Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection, Appl. Phys. Lett., 2006, vol. 89, no. 19, p. 191 913.CrossRef Mulaveesala, R. and Tuli, S., Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection, Appl. Phys. Lett., 2006, vol. 89, no. 19, p. 191 913.CrossRef
25.
go back to reference Ibarra-Castanedo, C. and Maldague, X.P., Defect depth retrieval from pulsed phase thermographic data on plexiglas and aluminum samples, in Defense and Security, 2004, pp. 348–356. Ibarra-Castanedo, C. and Maldague, X.P., Defect depth retrieval from pulsed phase thermographic data on plexiglas and aluminum samples, in Defense and Security, 2004, pp. 348–356.
26.
go back to reference Feuillet, V., Ibos, L., Fois, M., Dumoulin, J., and Candau, Y., Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling, NDT & E Int., 2012, vol. 51, pp. 58–67.CrossRef Feuillet, V., Ibos, L., Fois, M., Dumoulin, J., and Candau, Y., Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling, NDT & E Int., 2012, vol. 51, pp. 58–67.CrossRef
27.
go back to reference Maierhofer, C., Röllig, M., Ehrig, K., Meinel, D., and Céspedes-Gonzales, G., Validation of flash thermography using computed tomography for characterizing inhomogeneities and defects in CFRP structures, Composites: Part B, 2014, vol. 64, pp. 175–186.CrossRef Maierhofer, C., Röllig, M., Ehrig, K., Meinel, D., and Céspedes-Gonzales, G., Validation of flash thermography using computed tomography for characterizing inhomogeneities and defects in CFRP structures, Composites: Part B, 2014, vol. 64, pp. 175–186.CrossRef
28.
go back to reference Zoecke, C., Langmeier, A., and Arnold, W., Size retrieval of defects in composite material with lockin thermography, J. Phys.: Conf. Ser., 2010, vol. 214, no. 1, p. 012 093. Zoecke, C., Langmeier, A., and Arnold, W., Size retrieval of defects in composite material with lockin thermography, J. Phys.: Conf. Ser., 2010, vol. 214, no. 1, p. 012 093.
29.
go back to reference Chatterjee, K. and Tuli, S., Prediction of blind frequency in lock-in thermography using electro- thermal model based numerical simulation, J. Appl. Phys., 2013, vol. 114, no. 17.CrossRef Chatterjee, K. and Tuli, S., Prediction of blind frequency in lock-in thermography using electro- thermal model based numerical simulation, J. Appl. Phys., 2013, vol. 114, no. 17.CrossRef
30.
go back to reference Assael, M.J., Botsios, S., Gialou, K., and Metaxa, I.N., Thermal conductivity of polymethyl methacrylate (PMMA) and borosilicate crown glass BK7, Int. J. Thermophys., 2005, vol. 26, no. 5, pp. 1595–1605.CrossRef Assael, M.J., Botsios, S., Gialou, K., and Metaxa, I.N., Thermal conductivity of polymethyl methacrylate (PMMA) and borosilicate crown glass BK7, Int. J. Thermophys., 2005, vol. 26, no. 5, pp. 1595–1605.CrossRef
Metadata
Title
Non-Destructive Infrared Lock-in Thermal Tests: Update on the Current Defect Detectability
Authors
António Ramos Silva
Mário Vaz
Sofia Ribeirinho Leite
Joaquim Mendes
Publication date
01-10-2019
Publisher
Pleiades Publishing
Published in
Russian Journal of Nondestructive Testing / Issue 10/2019
Print ISSN: 1061-8309
Electronic ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830919100097

Other articles of this Issue 10/2019

Russian Journal of Nondestructive Testing 10/2019 Go to the issue

Premium Partners