Skip to main content
Top

2024 | OriginalPaper | Chapter

Non-global Multiplicative Lie Triple Derivations on Rings

Authors : Mohammad Ashraf, Mohammad Afajal Ansari, Md Shamim Akhter

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(\mathfrak {R}\) be a ring containing a nontrivial idempotent with center \(\mathcal {Z}(\mathfrak {R})\). In the present article, it is shown that under certain restrictions every map \(\xi :\mathfrak {R}\rightarrow \mathfrak {R}\) (not necessarily additive) satisfying \(\xi ([[S, T], U])=[[\xi (S), T], U]+[[S,\xi (T)],\) \( U]+[[S, T],\xi (U)]\) for all \(S, T, U\in \mathfrak {R}\) with \(STU=0,\) is almost additive, that is, \(\xi (S+T)-\xi (S)-\xi (T)\in \mathcal {Z}(\mathfrak {R}).\) In addition, if \(\mathfrak {R}\) is a 2-torsion free prime ring, then \(\xi \) is of the form \(\xi =\partial +\eta ,\) where \(\partial \) is a derivation from \(\mathfrak {R}\) into its central closure \(\mathfrak {S}\) and \(\eta \) is a map from \(\mathfrak {R}\) into its extended centroid \(\mathfrak {C}\) such that \(\eta (S+T)-\eta (S)-\eta (T)\in \mathcal {Z}(\mathfrak {R})\) and \(\eta ([[S, T], U])=0\) for all \(S,T,U\in \mathfrak {R}\) with \(STU=0.\) The obtained results are then applied to standard operator algebras, factor von Neumann algebras and the algebra of all bounded linear operators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Beidar, K.I., Martindale III, W.S., Mikhalev, A.V.: Ring with Generalized Identities. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 96. Marcel Dakker, New York (1996) Beidar, K.I., Martindale III, W.S., Mikhalev, A.V.: Ring with Generalized Identities. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 96. Marcel Dakker, New York (1996)
7.
go back to reference Halmos, P.R.: A Hilbert Space Problem Book, 2nd edn. Springer-Verlag, New York (1982)CrossRef Halmos, P.R.: A Hilbert Space Problem Book, 2nd edn. Springer-Verlag, New York (1982)CrossRef
13.
go back to reference Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969) Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969)
14.
go back to reference Mires, C.R.: Lie derivations of von Neumann algebras. Duke Math. J. 40, 403–409 (1973)MathSciNet Mires, C.R.: Lie derivations of von Neumann algebras. Duke Math. J. 40, 403–409 (1973)MathSciNet
18.
go back to reference Su, Y.-T., Zhang, J.-H.: Non-global nonlinear Lie triple derivable maps on factor von Neumann algebras. J. Jilin Univ. Sci. 57(4), 786–792 (2019)MathSciNet Su, Y.-T., Zhang, J.-H.: Non-global nonlinear Lie triple derivable maps on factor von Neumann algebras. J. Jilin Univ. Sci. 57(4), 786–792 (2019)MathSciNet
Metadata
Title
Non-global Multiplicative Lie Triple Derivations on Rings
Authors
Mohammad Ashraf
Mohammad Afajal Ansari
Md Shamim Akhter
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_15

Premium Partner