Skip to main content
Top
Published in:

01-12-2023

Non-linear Feature Selection Based on Convolution Neural Networks with Sparse Regularization

Authors: Wen-Bin Wu, Si-Bao Chen, Chris Ding, Bin Luo

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The efficacy of feature selection methods in dimensionality reduction and enhancing the performance of learning algorithms has been well documented. Traditional feature selection algorithms often grapple with delineating non-linear relationships between features and responses. While deep neural networks excel in capturing such non-linearities, their inherent “black-box” nature detracts from their interpretability. Furthermore, the complexity of deep network architectures can give rise to prolonged training durations and the challenge of vanishing gradients. This study aims to refine network structures, hasten network training, and bolster model interpretability without forfeiting accuracy. This paper delves into a sparse-weighted feature selection approach grounded in convolutional neural networks, termed the low-dimensional sparse-weighted feature selection network (LSWFSNet). LSWFSNet integrates a convolutional selection kernel between the input and convolutional layers, facilitating weighted convolutional calculations on input data while imposing sparse constraints on the selection kernel. Features with significant weights in this kernel are earmarked for subsequent operations in the LSWFSNet computational domain, while those with negligible weights are eschewed to diminish model intricacy. By streamlining the network’s input data, LSWFSNet refines the post-convolution feature maps, thus simplifying its structure. Acknowledging the intrinsic interconnections within the data, our study amalgamates diverse sparse constraints into a cohesive objective function. This ensures the convolutional kernel’s sparsity while acknowledging the structural dynamics of the data. Notably, the foundational convolutional network in this method can be substituted with any deep convolutional network, contingent upon suitable adjustments to the convolutional selection kernel in relation to input data dimensions. The LSWFSNet model was tested on human emotion electroencephalography (EEG) datasets curated by Shanghai Jiao Tong University. When various sparse constraint methodologies were employed, the convolutional kernel manifested sparsity. Regions in the convolutional selection kernel with non-zero weights were identified as having strong correlations with emotional responses. The empirical outcomes not only resonate with extant neuroscience insights but also supersede the baseline network in accuracy metrics. LSWFSNet’s applicability extends to pivotal tasks like keypoint recognition, be it the extraction of salient pixels in facial detection models or the isolation of target attributes in object detection frameworks. This study’s significance is anchored in the amalgamation of sparse constraint techniques with deep convolutional networks, supplanting traditional fully connected networks. This fusion amplifies model interpretability and broadens its applicability, notably in image processing arenas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang S, Lang Z-Q. Orthogonal least squares based fast feature selection for linear classification. Patt Recog. 2022;3(123):108419.CrossRef Zhang S, Lang Z-Q. Orthogonal least squares based fast feature selection for linear classification. Patt Recog. 2022;3(123):108419.CrossRef
2.
go back to reference Shang R, Zhang X, Feng J, et al. Sparse and low-dimensional representation with maximum entropy adaptive graph for feature selection. Neurocomputing. 2022;7(485):57–73.CrossRef Shang R, Zhang X, Feng J, et al. Sparse and low-dimensional representation with maximum entropy adaptive graph for feature selection. Neurocomputing. 2022;7(485):57–73.CrossRef
3.
go back to reference Hallajian B, Motameni H, Akbari E. Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification. Exp Syst Appl. 2022;15(200):116794.CrossRef Hallajian B, Motameni H, Akbari E. Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification. Exp Syst Appl. 2022;15(200):116794.CrossRef
4.
go back to reference Li M, Huan J, Yang J. Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN. Med Biol Eng Comput. 2021;59:2037–50.CrossRef Li M, Huan J, Yang J. Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN. Med Biol Eng Comput. 2021;59:2037–50.CrossRef
5.
go back to reference Chen S, Ding CHQ, Zhou Z, Luo B. Feature selection based on correlation deflation. Neural Comput Appl. 2019;10(31):6383–92.CrossRef Chen S, Ding CHQ, Zhou Z, Luo B. Feature selection based on correlation deflation. Neural Comput Appl. 2019;10(31):6383–92.CrossRef
6.
go back to reference You D, Sun M, Liang S, et al. Online feature selection for multi-source streaming features. Inf Sci. 2022;4(590):267–95.CrossRef You D, Sun M, Liang S, et al. Online feature selection for multi-source streaming features. Inf Sci. 2022;4(590):267–95.CrossRef
7.
go back to reference Wei Z, Li Q, Wei J, et al. Neural networks for a class of sparse optimization with \(L_0\)-regularization. Neural Netw. 2022;151:211–21. Wei Z, Li Q, Wei J, et al. Neural networks for a class of sparse optimization with \(L_0\)-regularization. Neural Netw. 2022;151:211–21.
8.
go back to reference Vu V, Lei J. Minimax sparse principal subspace estimation in high dimension. Inst Math Stat. 2013;6(41):2905–47.MathSciNet Vu V, Lei J. Minimax sparse principal subspace estimation in high dimension. Inst Math Stat. 2013;6(41):2905–47.MathSciNet
9.
go back to reference Pang T, Nie F, Han J, et al. Efficient feature selection via \(L_{2,0}\)-norm constrained sparsed regression. IEEE Trans Knowl Data Eng. 2019;5(31):880–93.CrossRef Pang T, Nie F, Han J, et al. Efficient feature selection via \(L_{2,0}\)-norm constrained sparsed regression. IEEE Trans Knowl Data Eng. 2019;5(31):880–93.CrossRef
10.
go back to reference Jin X, Miao J, Wang Q, et al. Sparse matrix factorization with \(L_{2,1}\)-norm for matrix completion. Patt Recog. 2022;127:108655.CrossRef Jin X, Miao J, Wang Q, et al. Sparse matrix factorization with \(L_{2,1}\)-norm for matrix completion. Patt Recog. 2022;127:108655.CrossRef
11.
go back to reference Huang Y, Jie W, Yu Z, et al. Supervised feature selection through deep neural networks with pairwise connected structure. Knowl Based Syst. 2020;27(204):106202.CrossRef Huang Y, Jie W, Yu Z, et al. Supervised feature selection through deep neural networks with pairwise connected structure. Knowl Based Syst. 2020;27(204):106202.CrossRef
12.
go back to reference Tokovarov M. Convolutional neural networks with reusable full-dimension-long layers for feature selection and classification of motor imagery in EEG signals. In: 29th International Conference on Artificial Neural Networks. 2020. p. 79–91. Tokovarov M. Convolutional neural networks with reusable full-dimension-long layers for feature selection and classification of motor imagery in EEG signals. In: 29th International Conference on Artificial Neural Networks. 2020. p. 79–91.
13.
go back to reference Wu Y, Lan Y, Zhang L, et al. Feature flow regularization: improving structured sparsity in deep neural networks. Neural Netw. 2023;161:598–613.CrossRef Wu Y, Lan Y, Zhang L, et al. Feature flow regularization: improving structured sparsity in deep neural networks. Neural Netw. 2023;161:598–613.CrossRef
14.
go back to reference Nie F, Huang H, Cai X, Ding C.: Efficient and robust feature selection via joint \(L_{2,1}\)-norm minimization. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems. 2020. p. 1813–21. Nie F, Huang H, Cai X, Ding C.: Efficient and robust feature selection via joint \(L_{2,1}\)-norm minimization. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems. 2020. p. 1813–21.
15.
go back to reference Wang Z, Nie F, Lai T, et al. Discriminative feature selection via a structured sparse subspace learning Module. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-2020). pp. 3009–15. Wang Z, Nie F, Lai T, et al. Discriminative feature selection via a structured sparse subspace learning Module. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-2020). pp. 3009–15.
16.
go back to reference Zhang H, Wang J, Sun Z, et al. Feature selection for neural networks using group Lasso regularization. IEEE Trans Knowl Data Eng. 2020;4(32):659–73.CrossRef Zhang H, Wang J, Sun Z, et al. Feature selection for neural networks using group Lasso regularization. IEEE Trans Knowl Data Eng. 2020;4(32):659–73.CrossRef
17.
go back to reference Cai X, Nie F, Huang H. Exact top-k feature selection via l2,0-norm constraint. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. 2013. p. 1240–6. Cai X, Nie F, Huang H. Exact top-k feature selection via l2,0-norm constraint. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. 2013. p. 1240–6.
18.
go back to reference Scardapance S, Comminiello D, Hussain A, et al. Group sparse regularization for deep neural networks. Neurocomputing. 2017;7(241):81–9.CrossRef Scardapance S, Comminiello D, Hussain A, et al. Group sparse regularization for deep neural networks. Neurocomputing. 2017;7(241):81–9.CrossRef
19.
go back to reference Rui T, Zou J, Zhou Y, et al. Convolutional neural network feature maps selection based on LDA. Multimed Tools Appl. 2018;77:10635–49.CrossRef Rui T, Zou J, Zhou Y, et al. Convolutional neural network feature maps selection based on LDA. Multimed Tools Appl. 2018;77:10635–49.CrossRef
20.
go back to reference Xie X, Zhang H, Wang J, et al. Learning optimized structure of neural networks by hidden node pruning with \(L_1\) regularization. IEEE Trans Cybern. 2020;3(50):1333–46.CrossRef Xie X, Zhang H, Wang J, et al. Learning optimized structure of neural networks by hidden node pruning with \(L_1\) regularization. IEEE Trans Cybern. 2020;3(50):1333–46.CrossRef
21.
go back to reference Li Y, Yu C, Wasserman W. Deep feature selection: theory and application to identify enhancers and promoters. J Comput Biol. 2016;5(23):322–36.CrossRef Li Y, Yu C, Wasserman W. Deep feature selection: theory and application to identify enhancers and promoters. J Comput Biol. 2016;5(23):322–36.CrossRef
22.
go back to reference Yamada Y, Lindenbaum O, Negahban S, et al. Feature selection using stochastic gates. In: Proceedings of the 37th International Conference on Machine Learning, 119. 2020. p. 10648–59. Yamada Y, Lindenbaum O, Negahban S, et al. Feature selection using stochastic gates. In: Proceedings of the 37th International Conference on Machine Learning, 119. 2020. p. 10648–59.
23.
go back to reference Roffo G, Melzi S, Castellani U, et al. Infinite feature selection: a graph-based feature filtering approach. IEEE Trans Patt Anal Mach Intell. 2021;12(43):4396–410.CrossRef Roffo G, Melzi S, Castellani U, et al. Infinite feature selection: a graph-based feature filtering approach. IEEE Trans Patt Anal Mach Intell. 2021;12(43):4396–410.CrossRef
24.
go back to reference Zuo Z, Li J, Xu H, et al. Curvature-based feature selection with application in classifying electronic health records. Technol Forecast Soc Change. 2021;173:121–7.CrossRef Zuo Z, Li J, Xu H, et al. Curvature-based feature selection with application in classifying electronic health records. Technol Forecast Soc Change. 2021;173:121–7.CrossRef
25.
go back to reference Guo X, Yu K, Cao F, et al. Error-aware Markov blanket learning for causal feature selection. Inf Sci. 2022;589:849–77.CrossRef Guo X, Yu K, Cao F, et al. Error-aware Markov blanket learning for causal feature selection. Inf Sci. 2022;589:849–77.CrossRef
26.
go back to reference Saadatmand H, Akbarzadeh-T M-R. Set-based integer-coded fuzzy granular evolutionary algorithms for high-dimensional feature selection. Appl Soft Comput. 2023;142:110240. Saadatmand H, Akbarzadeh-T M-R. Set-based integer-coded fuzzy granular evolutionary algorithms for high-dimensional feature selection. Appl Soft Comput. 2023;142:110240.
Metadata
Title
Non-linear Feature Selection Based on Convolution Neural Networks with Sparse Regularization
Authors
Wen-Bin Wu
Si-Bao Chen
Chris Ding
Bin Luo
Publication date
01-12-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10230-8

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner