Skip to main content
Top

2024 | OriginalPaper | Chapter

Non-linear Reward Deep Q Networks for Smooth Action in a Car Game

Authors : Mohammad Iqbal, Achmad Afandy, Nurul Hidayat

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We formulate non-linear reward functions on deep Q networks in a car racing game by observing the environment (simulator). We aim to control the car movement (action) more smoothly in the game simulator than in the original. Existing studies about deep reinforcement learning maintained either discrete or non-linear reward functions without considering the environment domain, which may lead to illogical car movements. For instance, the car is blocked by three other cars, yet the game still continues by jumping to one of them. To overcome the issues, we define a non-linear reward function to compute the penalty game score based on the distance between the car and the one in front of it. From the game simulator, we surprisingly enjoy the results from the proposed reward function as the car drives more accurately and smoothly than the SOTA models, even at the start of the game point, by showing the smallest number of crashes and no zigzaggy agent movement when the obstacles are far from it.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC Press (2017) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC Press (2017)
2.
go back to reference Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., Song, L.: SBEED: Convergent reinforcement learning with nonlinear function approximation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1125–1134. PMLR, 10–15 Jul 2018. https://proceedings.mlr.press/v80/dai18c.html Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., Song, L.: SBEED: Convergent reinforcement learning with nonlinear function approximation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1125–1134. PMLR, 10–15 Jul 2018. https://​proceedings.​mlr.​press/​v80/​dai18c.​html
3.
go back to reference Dlugosz, Z., Dlugosz, R.: Nonlinear activation functions for artificial neural networks realized in hardware. In: 2018 25th International Conference Mixed Design of Integrated Circuits and System (MIXDES), pp. 381–384 (2018) Dlugosz, Z., Dlugosz, R.: Nonlinear activation functions for artificial neural networks realized in hardware. In: 2018 25th International Conference Mixed Design of Integrated Circuits and System (MIXDES), pp. 381–384 (2018)
6.
go back to reference Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16), pp. 2094–2100. AAAI Press (2016) Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16), pp. 2094–2100. AAAI Press (2016)
8.
go back to reference Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.A.A., Yogamani, S., Pérez, P.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23(6), 4909–4926 (2022)CrossRef Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.A.A., Yogamani, S., Pérez, P.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23(6), 4909–4926 (2022)CrossRef
9.
go back to reference Lin, C.C., Deng, D.J., Chih, Y.L., Chiu, H.T.: Smart manufacturing scheduling with edge computing using multiclass deep q network. IEEE Trans. Industr. Inf. 15(7), 4276–4284 (2019)CrossRef Lin, C.C., Deng, D.J., Chih, Y.L., Chiu, H.T.: Smart manufacturing scheduling with edge computing using multiclass deep q network. IEEE Trans. Industr. Inf. 15(7), 4276–4284 (2019)CrossRef
10.
go back to reference Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013) Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013)
11.
go back to reference Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
12.
go back to reference Moghadam, M., Elkaim, G.H.: A hierarchical architecture for sequential decision-making in autonomous driving using deep reinforcement learning (2019). Preprint at arXiv:1906.08464 Moghadam, M., Elkaim, G.H.: A hierarchical architecture for sequential decision-making in autonomous driving using deep reinforcement learning (2019). Preprint at arXiv:​1906.​08464
13.
go back to reference Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992) Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
Metadata
Title
Non-linear Reward Deep Q Networks for Smooth Action in a Car Game
Authors
Mohammad Iqbal
Achmad Afandy
Nurul Hidayat
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_19

Premium Partners