Skip to main content
Top

2024 | OriginalPaper | Chapter

10. Non-linear System Identification for UAS Adaptive Control

Authors : Sean Bazzocchi, Afzal Suleman

Published in: Unmanned Aerial Vehicle Design and Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fast aircraft prototyping, fault detection, morphing surfaces, and real-time generation of dynamic models are just some of the advantages of a model identification adaptive controller (MIAC). The research presented in this paper introduces a MIAC architecture and validates a novel data-driven algorithm to be used for online system identification of unmanned aerial system (UAS). The simulation results illustrate the effects and the limits of short training time and sensor noise on the identified model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Brunton SL, Proctor JL, Kutz JN, Bialek W (2016a) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci U S A 113:3932–3937MathSciNetCrossRefMATH Brunton SL, Proctor JL, Kutz JN, Bialek W (2016a) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci U S A 113:3932–3937MathSciNetCrossRefMATH
go back to reference Brunton SL, Proctor JL, Kutz JN (2016b) Sparse identification of nonlinear dynamics with control (SINDYc). IFAC-PapersOnLine 49:710–715CrossRef Brunton SL, Proctor JL, Kutz JN (2016b) Sparse identification of nonlinear dynamics with control (SINDYc). IFAC-PapersOnLine 49:710–715CrossRef
go back to reference Eugene HH, Viken EM, Brandon JM, Croom MA (2020) NASA’s learn-to-fly project overview Eugene HH, Viken EM, Brandon JM, Croom MA (2020) NASA’s learn-to-fly project overview
go back to reference Grauer J (2018) Frequency responses estimated with multisine inputs dynamic modeling using output-error parameter estimation based on frequency responses estimated with multisine inputs Grauer J (2018) Frequency responses estimated with multisine inputs dynamic modeling using output-error parameter estimation based on frequency responses estimated with multisine inputs
go back to reference Quade M, Abel M, Nathan Kutz J, Brunton SL (2018) Sparse identification of nonlinear dynamics for rapid model recovery. Chaos 28:1–10MathSciNetCrossRef Quade M, Abel M, Nathan Kutz J, Brunton SL (2018) Sparse identification of nonlinear dynamics for rapid model recovery. Chaos 28:1–10MathSciNetCrossRef
go back to reference Van Wesel P, Goodloe AE (2017) Challenges in the verification of reinforcement learning algorithms NASA STI program … in profile. 2017–219628 Van Wesel P, Goodloe AE (2017) Challenges in the verification of reinforcement learning algorithms NASA STI program … in profile. 2017–219628
Metadata
Title
Non-linear System Identification for UAS Adaptive Control
Authors
Sean Bazzocchi
Afzal Suleman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-45321-2_10