Skip to main content
Top

10-08-2024

Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis

Authors: Shengkun Xie, Chong Gan, Anna T. Lawniczak

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Fernandez A (2017) Prisoners of the zip code: how single zip code rate-making hurts the public interest. Thomas L. Rev. 30:117 Fernandez A (2017) Prisoners of the zip code: how single zip code rate-making hurts the public interest. Thomas L. Rev. 30:117
3.
go back to reference Butler P (2006) Driver negligence vs. Odometer miles: rival theories to explain 12 predictors of auto insurance claims. In: American risk & insurance association annual meeting. Washington, DC, vol 9 Butler P (2006) Driver negligence vs. Odometer miles: rival theories to explain 12 predictors of auto insurance claims. In: American risk & insurance association annual meeting. Washington, DC, vol 9
8.
go back to reference Clark DR (2011) Credibility for a tower of excess layers. Variance 5(1):32–44 Clark DR (2011) Credibility for a tower of excess layers. Variance 5(1):32–44
9.
go back to reference Duong TD, Duong VN (2008) Non-negative sparse principal component analysis for multidimensional constrained optimization. In: PRICAI 2008: trends in artificial intelligence: 10th Pacific rim international conference on artificial intelligence, Hanoi, Vietnam, December 15–19, 2008. Proceedings 10. Springer, Berlin, pp 103–114. https://doi.org/10.1007/978-3-540-89197-01_3 Duong TD, Duong VN (2008) Non-negative sparse principal component analysis for multidimensional constrained optimization. In: PRICAI 2008: trends in artificial intelligence: 10th Pacific rim international conference on artificial intelligence, Hanoi, Vietnam, December 15–19, 2008. Proceedings 10. Springer, Berlin, pp 103–114. https://​doi.​org/​10.​1007/​978-3-540-89197-01_​3
10.
go back to reference Duong TD (2009) Non-negative sparse principal component analysis. J Tech Educ Sci 4(3):31–38 Duong TD (2009) Non-negative sparse principal component analysis. J Tech Educ Sci 4(3):31–38
11.
go back to reference Hoyer PO (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5(9):1457–1469 Hoyer PO (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5(9):1457–1469
15.
go back to reference Asteris M, Papailiopoulos D, Dimakis A (2014) Nonnegative sparse PCA with provable guarantees. In: International conference on machine learning. PMLR, pp 1728–1736 Asteris M, Papailiopoulos D, Dimakis A (2014) Nonnegative sparse PCA with provable guarantees. In: International conference on machine learning. PMLR, pp 1728–1736
17.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York, pp 2250–2254 Olson DL, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York, pp 2250–2254
18.
go back to reference Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
28.
go back to reference Jandaghi G, Moazzez H, Moradpour Z (2015) Life insurance customers segmentation using fuzzy clustering. World Sci News 21:24–35 Jandaghi G, Moazzez H, Moradpour Z (2015) Life insurance customers segmentation using fuzzy clustering. World Sci News 21:24–35
44.
go back to reference Seddik MEA, Tamaazousti M, Couillet R (2019) A kernel random matrix-based approach for sparse PCA. In: ICLR 2019-international conference on learning representations Seddik MEA, Tamaazousti M, Couillet R (2019) A kernel random matrix-based approach for sparse PCA. In: ICLR 2019-international conference on learning representations
45.
go back to reference Lee D, Seung HS (2000) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 13 Lee D, Seung HS (2000) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 13
Metadata
Title
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis
Authors
Shengkun Xie
Chong Gan
Anna T. Lawniczak
Publication date
10-08-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00570-z

Premium Partner