Skip to main content
Top
Published in: Calcolo 4/2020

01-12-2020

Nonconforming virtual element method for 2mth order partial differential equations in \({\mathbb {R}}^n\) with \(m>n\)

Author: Xuehai Huang

Published in: Calcolo | Issue 4/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The \(H^m\)-nonconforming virtual elements of any order k on any shape of polytope in \({\mathbb {R}}^n\) with constraints \(m> n\) and \(k\ge m\) are constructed in a universal way. A generalized Green’s identity for \(H^m\) inner product with \(m>n\) is derived, which is essential to devise the \(H^m\)-nonconforming virtual elements. By means of the local \(H^m\) projection and a stabilization term using only the boundary degrees of freedom, the \(H^m\)-nonconforming virtual element methods are proposed to approximate solutions of the m-harmonic equation. The norm equivalence of the stabilization on the kernel of the local \(H^m\) projection is proved by using the bubble function technique, the Poincaré inquality and the trace inequality, which implies the well-posedness of the virtual element methods. The optimal error estimates for the \(H^m\)-nonconforming virtual element methods are achieved from an estimate of the weak continuity and the error estimate of the canonical interpolation. Finally, the implementation of the nonconforming virtual element method is discussed.
Literature
1.
go back to reference Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)MathSciNetMATHCrossRef Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)MathSciNetMATHCrossRef
2.
go back to reference Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79(7), 2021–2034 (2020)MathSciNetMATHCrossRef Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79(7), 2021–2034 (2020)MathSciNetMATHCrossRef
3.
go back to reference Argyris, J., Fried, I., Scharpf, D.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968) Argyris, J., Fried, I., Scharpf, D.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968)
4.
go back to reference Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)MathSciNetMATHCrossRef Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)MathSciNetMATHCrossRef
5.
go back to reference Beirão Da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math. Ser. B 39(2), 315–334 (2018)MathSciNetMATHCrossRef Beirão Da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math. Ser. B 39(2), 315–334 (2018)MathSciNetMATHCrossRef
6.
7.
go back to reference Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element implementation for general elliptic equations. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, pp. 39–71. Springer, Cham (2016)CrossRef Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element implementation for general elliptic equations. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, pp. 39–71. Springer, Cham (2016)CrossRef
8.
go back to reference Beirão da Veiga, L., Dassi, F., Russo, A.: A \(C^1\) virtual element method on polyhedral meshes. Comput. Math. Appl. 79(7), 1936–1955 (2020)MathSciNetMATHCrossRef Beirão da Veiga, L., Dassi, F., Russo, A.: A \(C^1\) virtual element method on polyhedral meshes. Comput. Math. Appl. 79(7), 1936–1955 (2020)MathSciNetMATHCrossRef
9.
go back to reference Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)MathSciNetMATHCrossRef
10.
go back to reference Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)MathSciNetMATHCrossRef
11.
13.
go back to reference Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, third edition edn. Springer, New York (2008)MATHCrossRef Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, third edition edn. Springer, New York (2008)MATHCrossRef
14.
go back to reference Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(7), 1291–1336 (2018)MathSciNetMATHCrossRef Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(7), 1291–1336 (2018)MathSciNetMATHCrossRef
15.
go back to reference Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetMATHCrossRef Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetMATHCrossRef
17.
go back to reference Chen, L., Huang, X.: Nonconforming virtual element method for \(2m\)th order partial differential equations in \(\mathbb{R}^n\). Math. Comput. 89(324), 1711–1744 (2020)MATHCrossRefMathSciNet Chen, L., Huang, X.: Nonconforming virtual element method for \(2m\)th order partial differential equations in \(\mathbb{R}^n\). Math. Comput. 89(324), 1711–1744 (2020)MATHCrossRefMathSciNet
18.
go back to reference Droniou, J., Ilyas, M., Lamichhane, B.P., Wheeler, G.E.: A mixed finite element method for a sixth-order elliptic problem. IMA J. Numer. Anal. 39(1), 374–397 (2019)MathSciNetMATHCrossRef Droniou, J., Ilyas, M., Lamichhane, B.P., Wheeler, G.E.: A mixed finite element method for a sixth-order elliptic problem. IMA J. Numer. Anal. 39(1), 374–397 (2019)MathSciNetMATHCrossRef
19.
20.
go back to reference Gudi, T., Neilan, M.: An interior penalty method for a sixth-order elliptic equation. IMA J. Numer. Anal. 31(4), 1734–1753 (2011)MathSciNetMATHCrossRef Gudi, T., Neilan, M.: An interior penalty method for a sixth-order elliptic equation. IMA J. Numer. Anal. 31(4), 1734–1753 (2011)MathSciNetMATHCrossRef
21.
go back to reference Hu, J., Huang, Y., Zhang, S.: The lowest order differentiable finite element on rectangular grids. SIAM J. Numer. Anal. 49(4), 1350–1368 (2011)MathSciNetMATHCrossRef Hu, J., Huang, Y., Zhang, S.: The lowest order differentiable finite element on rectangular grids. SIAM J. Numer. Anal. 49(4), 1350–1368 (2011)MathSciNetMATHCrossRef
22.
go back to reference Hu, J., Zhang, S.: The minimal conforming \(H^k\) finite element spaces on \(R^n\) rectangular grids. Math. Comput. 84(292), 563–579 (2015)MATHCrossRefMathSciNet Hu, J., Zhang, S.: The minimal conforming \(H^k\) finite element spaces on \(R^n\) rectangular grids. Math. Comput. 84(292), 563–579 (2015)MATHCrossRefMathSciNet
23.
go back to reference Hu, J., Zhang, S.: A canonical construction of \(H^m\)-nonconforming triangular finite elements. Ann. Appl. Math. 33(3), 266–288 (2017)MathSciNetMATH Hu, J., Zhang, S.: A canonical construction of \(H^m\)-nonconforming triangular finite elements. Ann. Appl. Math. 33(3), 266–288 (2017)MathSciNetMATH
25.
go back to reference Russo, A.: On the choice of the internal degrees of freedom for the nodal virtual element method in two dimensions. Comput. Math. Appl. 72(8), 1968–1976 (2016)MathSciNetMATHCrossRef Russo, A.: On the choice of the internal degrees of freedom for the nodal virtual element method in two dimensions. Comput. Math. Appl. 72(8), 1968–1976 (2016)MathSciNetMATHCrossRef
26.
go back to reference Schedensack, M.: A new discretization for \(m\)th-Laplace equations with arbitrary polynomial degrees. SIAM J. Numer. Anal. 54(4), 2138–2162 (2016)MathSciNetMATHCrossRef Schedensack, M.: A new discretization for \(m\)th-Laplace equations with arbitrary polynomial degrees. SIAM J. Numer. Anal. 54(4), 2138–2162 (2016)MathSciNetMATHCrossRef
27.
28.
go back to reference Wang, M., Xu, J.: Minimal finite element spaces for \(2m\)-th-order partial differential equations in \(R^n\). Math. Comput. 82(281), 25–43 (2013)MATHCrossRefMathSciNet Wang, M., Xu, J.: Minimal finite element spaces for \(2m\)-th-order partial differential equations in \(R^n\). Math. Comput. 82(281), 25–43 (2013)MATHCrossRefMathSciNet
29.
30.
go back to reference Wu, S., Xu, J.: \(\cal{P}_m\) interior penalty nonconforming finite element methods for \(2m\)-th order PDEs in \(R^{n}\). arXiv:1710.07678 (2017) Wu, S., Xu, J.: \(\cal{P}_m\) interior penalty nonconforming finite element methods for \(2m\)-th order PDEs in \(R^{n}\). arXiv:​1710.​07678 (2017)
31.
go back to reference Wu, S., Xu, J.: Nonconforming finite element spaces for \(2m\)th order partial differential equations on \(\mathbb{R}^n\) simplicial grids when \(m=n+1\). Math. Comput. 88(316), 531–551 (2019)MATHCrossRefMathSciNet Wu, S., Xu, J.: Nonconforming finite element spaces for \(2m\)th order partial differential equations on \(\mathbb{R}^n\) simplicial grids when \(m=n+1\). Math. Comput. 88(316), 531–551 (2019)MATHCrossRefMathSciNet
33.
go back to reference Ženíšek, A.: Tetrahedral finite \(C^{(m)}\)-elements. Acta Univ. Carolinae-Math. Phys. 15(1–2), 189–193 (1974)MathSciNetMATH Ženíšek, A.: Tetrahedral finite \(C^{(m)}\)-elements. Acta Univ. Carolinae-Math. Phys. 15(1–2), 189–193 (1974)MathSciNetMATH
34.
go back to reference Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)MathSciNetMATHCrossRef Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)MathSciNetMATHCrossRef
35.
go back to reference Zhang, S.: On the full \(C_1\)-\(Q_k\) finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2(6), 701–721 (2010)MathSciNetMATHCrossRef Zhang, S.: On the full \(C_1\)-\(Q_k\) finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2(6), 701–721 (2010)MathSciNetMATHCrossRef
36.
go back to reference Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26(9), 1671–1687 (2016)MathSciNetMATHCrossRef Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26(9), 1671–1687 (2016)MathSciNetMATHCrossRef
37.
go back to reference Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)MathSciNetMATHCrossRef Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)MathSciNetMATHCrossRef
Metadata
Title
Nonconforming virtual element method for 2mth order partial differential equations in with
Author
Xuehai Huang
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Calcolo / Issue 4/2020
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00381-7

Other articles of this Issue 4/2020

Calcolo 4/2020 Go to the issue

Premium Partner