Skip to main content
Top
Published in: Journal of Materials Science 22/2016

22-07-2016 | Original Paper

Noncovalently functionalized graphene oxide/graphene with imidazolium-based ionic liquids for adsorptive removal of dibenzothiophene from model fuel

Authors: Azam Khodadadi Dizaji, Hamid Reza Mortaheb, Babak Mokhtarani

Published in: Journal of Materials Science | Issue 22/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene (G) and graphene oxide (GO) were functionalized with 1-methyl-3-octyl-imidazolium hexafluorophosphate ([Omim][PF6]), 1-methyl-3-octyl-imidazolium tetrafluoroborate, and 1-methyl-3-octyl-imidazolium thiocyanate ionic liquids through a non-covalent functionalizing procedure. Different characterization techniques including XRD, AFM, FTIR, SEM/EDX, TGA, XPS, and RAMAN spectroscopy were used to verify the success of functionalization. The functionalized graphenes and graphene oxides were then used as adsorbents to remove dibenzothiophene from a model fuel having decane as the solvent. Among the prepared adsorbents, the functionalized graphene with the ionic liquid of [Omim][PF6] exhibited the highest adsorption capacity of 6.5 mg/g. The results showed that functionalization of graphene and graphene oxide improves their adsorption capacity in comparison to those of graphene (3.2 mg/g) and graphene oxide (2.25 mg/g).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Novoselov KS, Fal′ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200CrossRef Novoselov KS, Fal′ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200CrossRef
3.
go back to reference Novoselov KS, Geim AK, Morozov SV et al (2011) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2011) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
4.
go back to reference Vilatela JJ, Eder D (2012) Nanocarbon composites and hybrids in sustainability: a review. Chem Sus Chem 5:456–478CrossRef Vilatela JJ, Eder D (2012) Nanocarbon composites and hybrids in sustainability: a review. Chem Sus Chem 5:456–478CrossRef
5.
go back to reference Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
6.
go back to reference Huang X, Yin Z, Wu S et al (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902CrossRef Huang X, Yin Z, Wu S et al (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902CrossRef
8.
go back to reference Mo Y, Wan Y, Chau A, Huang F (2014) Graphene/ionic liquid composite films and ion exchange. Sci Rep 4:5466–5473CrossRef Mo Y, Wan Y, Chau A, Huang F (2014) Graphene/ionic liquid composite films and ion exchange. Sci Rep 4:5466–5473CrossRef
9.
go back to reference Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nat Publ Gr 442:280–286 Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nat Publ Gr 442:280–286
10.
go back to reference Yu JG, Yu LY, Yang H et al (2015) Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ 502:70–79CrossRef Yu JG, Yu LY, Yang H et al (2015) Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ 502:70–79CrossRef
11.
go back to reference Dinda D, Gupta A, Saha SK (2013) Removal of toxic Cr(vi) by UV-active functionalized graphene oxide for water purification. J Mater Chem A 1:11221–11228CrossRef Dinda D, Gupta A, Saha SK (2013) Removal of toxic Cr(vi) by UV-active functionalized graphene oxide for water purification. J Mater Chem A 1:11221–11228CrossRef
13.
go back to reference Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150CrossRef Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150CrossRef
14.
go back to reference Edwards RS, Coleman KS (2013) Graphene film growth on polycrystalline metals. Acc Chem Res 46:23–30CrossRef Edwards RS, Coleman KS (2013) Graphene film growth on polycrystalline metals. Acc Chem Res 46:23–30CrossRef
15.
go back to reference Kosidlo U, Arias M, Larramendi De R et al (2009) Production methods of graphene and resulting material properties. Carbon 472:8539–8542 Kosidlo U, Arias M, Larramendi De R et al (2009) Production methods of graphene and resulting material properties. Carbon 472:8539–8542
16.
go back to reference Sutter P (2009) Epitaxial graphene: how silicon leaves the scene. Nat Mater 8:171–172CrossRef Sutter P (2009) Epitaxial graphene: how silicon leaves the scene. Nat Mater 8:171–172CrossRef
17.
go back to reference Park S, An J, Potts JR et al (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023CrossRef Park S, An J, Potts JR et al (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023CrossRef
18.
go back to reference Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRef Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRef
19.
go back to reference Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–156519CrossRef Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–156519CrossRef
20.
go back to reference Becerril HA, Mao J, Liu Z et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470CrossRef Becerril HA, Mao J, Liu Z et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470CrossRef
21.
go back to reference Georgakilas V, Otyepka M, Bourlinos AB et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef
23.
go back to reference Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426CrossRef Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426CrossRef
24.
go back to reference Khupse ND, Kumar A (2010) Ionic liquids: new materials with wide applications. Indian J Chem-Sect A 49:635–648 Khupse ND, Kumar A (2010) Ionic liquids: new materials with wide applications. Indian J Chem-Sect A 49:635–648
25.
go back to reference Dharaskar Swapnil A (2012) Ionic liquids (a review): the green solvents for petroleum and hydrocarbon industries. Res J Chem Sci 2:80–85 Dharaskar Swapnil A (2012) Ionic liquids (a review): the green solvents for petroleum and hydrocarbon industries. Res J Chem Sci 2:80–85
26.
go back to reference Liu N, Luo F, Wu H et al (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525CrossRef Liu N, Luo F, Wu H et al (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525CrossRef
27.
go back to reference Lee JY, Liu LK (2013) Graphite oxide functionalized with ionic liquid and ruthenium as hydrogenation catalyst. Int J Hydrogen Energy 39:17492–17500CrossRef Lee JY, Liu LK (2013) Graphite oxide functionalized with ionic liquid and ruthenium as hydrogenation catalyst. Int J Hydrogen Energy 39:17492–17500CrossRef
28.
go back to reference Yang H, Shan C, Li F et al (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882CrossRef Yang H, Shan C, Li F et al (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882CrossRef
29.
go back to reference Zhao W, Tang Y, Xi J, Kong J (2015) Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes. Appl Surf Sci 326:276–284CrossRef Zhao W, Tang Y, Xi J, Kong J (2015) Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes. Appl Surf Sci 326:276–284CrossRef
30.
go back to reference Yang H, Shan C, Li F et al (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Comm 42:3880–3882CrossRef Yang H, Shan C, Li F et al (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Comm 42:3880–3882CrossRef
31.
go back to reference Li S, Guo S, Yang H et al (2014) Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids. J Hazard Mater 270:11–17CrossRef Li S, Guo S, Yang H et al (2014) Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids. J Hazard Mater 270:11–17CrossRef
32.
go back to reference Yang Y-K, He C-E, Peng R-G et al (2012) Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J Mater Chem 22:5666–5675CrossRef Yang Y-K, He C-E, Peng R-G et al (2012) Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J Mater Chem 22:5666–5675CrossRef
33.
go back to reference Wang C, Lin B, Qiao G et al (2016) Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells. Mater Lett 173:219–222CrossRef Wang C, Lin B, Qiao G et al (2016) Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells. Mater Lett 173:219–222CrossRef
34.
go back to reference Ma WS, Wu L, Yang F, Wang SF (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49:562–571. doi:10.1007/s10853-013-7736-4 CrossRef Ma WS, Wu L, Yang F, Wang SF (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49:562–571. doi:10.​1007/​s10853-013-7736-4 CrossRef
35.
go back to reference Tamilarasan P, Remya TS, SR (2013) Ionic liquid functionalized graphene for carbon dioxide capture. Graphene 1:3–10CrossRef Tamilarasan P, Remya TS, SR (2013) Ionic liquid functionalized graphene for carbon dioxide capture. Graphene 1:3–10CrossRef
36.
go back to reference Fredlake CP, Crosthwaite JM, Hert DG et al (2004) Thermophysical properties of imidazolium-base ionic liquids (a review) d ionic liquids. 954. J Chem Eng Data 49:954–964CrossRef Fredlake CP, Crosthwaite JM, Hert DG et al (2004) Thermophysical properties of imidazolium-base ionic liquids (a review) d ionic liquids. 954. J Chem Eng Data 49:954–964CrossRef
37.
go back to reference Takahashi A, Yang FH, Yang RT (2002) New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption. Ind Eng Chem Res 41:2487–2496CrossRef Takahashi A, Yang FH, Yang RT (2002) New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption. Ind Eng Chem Res 41:2487–2496CrossRef
38.
go back to reference Nie Y, Li C, Sun A et al (2006) Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energy Fuels 20:2083–2087CrossRef Nie Y, Li C, Sun A et al (2006) Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energy Fuels 20:2083–2087CrossRef
39.
go back to reference Heidari MR, Mokhtarani B, Seghatoleslami N et al (2012) Liquid-liquid extraction of aromatics from their mixtures with alkanes using 1-methyl 3-octylimidazolium thiocyanate ionic liquid. J Chem Thermodyn 54:310–315CrossRef Heidari MR, Mokhtarani B, Seghatoleslami N et al (2012) Liquid-liquid extraction of aromatics from their mixtures with alkanes using 1-methyl 3-octylimidazolium thiocyanate ionic liquid. J Chem Thermodyn 54:310–315CrossRef
40.
go back to reference Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200CrossRef Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200CrossRef
41.
go back to reference Meindersma GW, Maase M, De Haan AB (2012) Ionic liquids. Ullmann’s Encyclopedia Ind Chem 19:547–575 Meindersma GW, Maase M, De Haan AB (2012) Ionic liquids. Ullmann’s Encyclopedia Ind Chem 19:547–575
42.
go back to reference William S, Hummers J, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef William S, Hummers J, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
43.
go back to reference Park S, An J, Piner RD et al (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594CrossRef Park S, An J, Piner RD et al (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594CrossRef
45.
go back to reference Hu N, Gao R, Wang Y et al (2012) The preparation and characterization of non-covalently functionalized graphene. J Nanosci Nanotechnol 12:99–104CrossRef Hu N, Gao R, Wang Y et al (2012) The preparation and characterization of non-covalently functionalized graphene. J Nanosci Nanotechnol 12:99–104CrossRef
46.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
47.
go back to reference Subrahmanyam KS, Ghosh A, Gomathi A et al (2009) Covalent and noncovalent functionalization and solubilization of graphene. Nanosci Nanotechnol Lett 1:28–31CrossRef Subrahmanyam KS, Ghosh A, Gomathi A et al (2009) Covalent and noncovalent functionalization and solubilization of graphene. Nanosci Nanotechnol Lett 1:28–31CrossRef
48.
go back to reference Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
49.
go back to reference Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
50.
go back to reference Sheshmani S, Fashapoyeh MA (2013) Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chim Slov 60:813–825 Sheshmani S, Fashapoyeh MA (2013) Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chim Slov 60:813–825
51.
go back to reference Yang YL, Kou Y (2004) Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun 6:226–227CrossRef Yang YL, Kou Y (2004) Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun 6:226–227CrossRef
52.
go back to reference Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75CrossRef Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75CrossRef
53.
go back to reference Mennella V, Monaco G, Colangeli L, Bussoletti E (1995) Raman spectra of carbon-based materials excited at 1064 nm. Carbon 33:115–121CrossRef Mennella V, Monaco G, Colangeli L, Bussoletti E (1995) Raman spectra of carbon-based materials excited at 1064 nm. Carbon 33:115–121CrossRef
54.
go back to reference Guo S, Wen D, Zhai Y et al (2011) Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene. Biosens Bioelectron 26:3475–3481CrossRef Guo S, Wen D, Zhai Y et al (2011) Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene. Biosens Bioelectron 26:3475–3481CrossRef
55.
go back to reference Haubner K, Morawski J et al (2011) The route to functional graphene oxide. Chem Phys Chem 200:1–22 Haubner K, Morawski J et al (2011) The route to functional graphene oxide. Chem Phys Chem 200:1–22
56.
go back to reference Oh YJ, Yoo JJ, Il Kim Y et al (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128CrossRef Oh YJ, Yoo JJ, Il Kim Y et al (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128CrossRef
57.
go back to reference Ferreira LS, Trierweiler JO (2009) Modeling and simulation of the polymeric nanocapsule formation process. IFAC Proc 7:405–410CrossRef Ferreira LS, Trierweiler JO (2009) Modeling and simulation of the polymeric nanocapsule formation process. IFAC Proc 7:405–410CrossRef
58.
go back to reference Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. 123:10699–10704 Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. 123:10699–10704
59.
go back to reference Kim JH, Ma X, Zhou A, Song C (2006) Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catal Today 111:74–83CrossRef Kim JH, Ma X, Zhou A, Song C (2006) Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catal Today 111:74–83CrossRef
60.
go back to reference Fallah RN, Azizian S (2012) Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Process Technol 93:45–52CrossRef Fallah RN, Azizian S (2012) Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Process Technol 93:45–52CrossRef
61.
go back to reference Wang F, Zhang Z, Yang J et al (2013) Immobilization of room temperature ionic liquid (RTIL) on silica gel for adsorption removal of thiophenic sulfur compounds from fuel. Fuel 107:394–399CrossRef Wang F, Zhang Z, Yang J et al (2013) Immobilization of room temperature ionic liquid (RTIL) on silica gel for adsorption removal of thiophenic sulfur compounds from fuel. Fuel 107:394–399CrossRef
62.
go back to reference Dong K, Zhang S, Wang D, Yao X (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782CrossRef Dong K, Zhang S, Wang D, Yao X (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782CrossRef
63.
go back to reference Anantharaj R, Banerjee T (2011) Fast solvent screening for the simultaneous hydrodesulfurization and hydrodenitrification of diesel oil using ionic liquids. J Chem Eng Data 56:2770–2785CrossRef Anantharaj R, Banerjee T (2011) Fast solvent screening for the simultaneous hydrodesulfurization and hydrodenitrification of diesel oil using ionic liquids. J Chem Eng Data 56:2770–2785CrossRef
Metadata
Title
Noncovalently functionalized graphene oxide/graphene with imidazolium-based ionic liquids for adsorptive removal of dibenzothiophene from model fuel
Authors
Azam Khodadadi Dizaji
Hamid Reza Mortaheb
Babak Mokhtarani
Publication date
22-07-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0237-5

Other articles of this Issue 22/2016

Journal of Materials Science 22/2016 Go to the issue

Premium Partners