Skip to main content
Top

2015 | OriginalPaper | Chapter

8. Nonlinear Applications of CCs

Authors : Raj Senani, D. R. Bhaskar, A. K. Singh

Published in: Current Conveyors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses the applications of CCs in realizing a number of non-linear functions such as multipliers, dividers, Squarers, square-rooters, fuzzy functions, analog switches, pseudo-exponential circuits and built-in-test structures. Also discussed are a variety of Schmitt triggers, relaxation oscillators, wave form generators and chaotic oscillators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu SI, Wu DS, Tsao HW, Wu J, Tsay JH (1993) Nonlinear circuit applications with current conveyors. IEE Proc G 140:1–6CrossRef Liu SI, Wu DS, Tsao HW, Wu J, Tsay JH (1993) Nonlinear circuit applications with current conveyors. IEE Proc G 140:1–6CrossRef
2.
go back to reference Liu SI, Hwang YS, Tsay JH (1993) CCII-based fuzzy membership function and MAX/MIN circuits. Electron Lett 29:116–118CrossRef Liu SI, Hwang YS, Tsay JH (1993) CCII-based fuzzy membership function and MAX/MIN circuits. Electron Lett 29:116–118CrossRef
3.
go back to reference Toumazou C, Lidgey FJ, Chattong S (1994) High frequency current conveyor precision full-wave rectifier. Electron Lett 30:745–746CrossRef Toumazou C, Lidgey FJ, Chattong S (1994) High frequency current conveyor precision full-wave rectifier. Electron Lett 30:745–746CrossRef
4.
go back to reference Hayatleh K, Porta S, Lidgey FJ (1994) Temperature independent current conveyor precision rectifier. Electron Lett 30:2091–2093CrossRef Hayatleh K, Porta S, Lidgey FJ (1994) Temperature independent current conveyor precision rectifier. Electron Lett 30:2091–2093CrossRef
5.
go back to reference Stiurca D (1995) Truly temperature independent current conveyor precision rectifier. Electron Lett 31:1302–1303CrossRef Stiurca D (1995) Truly temperature independent current conveyor precision rectifier. Electron Lett 31:1302–1303CrossRef
6.
go back to reference Wilson B, Mannama V (1995) Current-mode rectifier with improved precision. Electron Lett 31:247–248CrossRef Wilson B, Mannama V (1995) Current-mode rectifier with improved precision. Electron Lett 31:247–248CrossRef
7.
go back to reference Khan AA, El-Ela MA, Al-Turaigi MA (1995) Current mode precision rectification. Int J Electron 79:853–859CrossRef Khan AA, El-Ela MA, Al-Turaigi MA (1995) Current mode precision rectification. Int J Electron 79:853–859CrossRef
8.
go back to reference Liu SI (1995) Square-rooting and vector summation circuits using current conveyors. IEE Proc Circ Devices Syst 142:223–226CrossRef Liu SI (1995) Square-rooting and vector summation circuits using current conveyors. IEE Proc Circ Devices Syst 142:223–226CrossRef
9.
go back to reference Cataldo GD, Palumbo G, Pennisi S (1995) A schmitt trigger by means of a CCII+. Int J Circ Theor Appl 23:161–165CrossRef Cataldo GD, Palumbo G, Pennisi S (1995) A schmitt trigger by means of a CCII+. Int J Circ Theor Appl 23:161–165CrossRef
10.
go back to reference Hatzopoulos AA, Siskos S, Laopoulos TH (1997) Current conveyor based test structures for mixed signal circuits. IEE Proc Circ Devices Syst 144:213–217CrossRef Hatzopoulos AA, Siskos S, Laopoulos TH (1997) Current conveyor based test structures for mixed signal circuits. IEE Proc Circ Devices Syst 144:213–217CrossRef
11.
go back to reference Christophe P, Abouchi N, Grisel R, Chante JP (1998) A current conveyor-based high-frequency analog switch. IEEE Trans Circ Syst-I 45:298–300CrossRef Christophe P, Abouchi N, Grisel R, Chante JP (1998) A current conveyor-based high-frequency analog switch. IEEE Trans Circ Syst-I 45:298–300CrossRef
12.
go back to reference Surakampontorn W, Anuntahirunrat K, Riewruja V (1998) Sinusoidal frequency doubler and full-wave rectifier using translinear current conveyor. Electron Lett 34:2077–2079CrossRef Surakampontorn W, Anuntahirunrat K, Riewruja V (1998) Sinusoidal frequency doubler and full-wave rectifier using translinear current conveyor. Electron Lett 34:2077–2079CrossRef
13.
go back to reference Elwakil AS, Soliman AM (1999) Current conveyor chaos generators. IEEE Trans Circ Syst-I 46:393–398CrossRef Elwakil AS, Soliman AM (1999) Current conveyor chaos generators. IEEE Trans Circ Syst-I 46:393–398CrossRef
14.
go back to reference Elwakil AS, Kennedy MP (1999) Three-phase oscillator modified for chaos. Microelectron J 30:863–867CrossRef Elwakil AS, Kennedy MP (1999) Three-phase oscillator modified for chaos. Microelectron J 30:863–867CrossRef
15.
go back to reference Monpapassorn A (2002) An analogue switch using a current conveyor. Int J Electron 89:651–656CrossRef Monpapassorn A (2002) An analogue switch using a current conveyor. Int J Electron 89:651–656CrossRef
16.
go back to reference Maundy B, Gift S (2005) Novel pseudo-exponential circuits. IEEE Trans Circ Syst-II 52:675–679CrossRef Maundy B, Gift S (2005) Novel pseudo-exponential circuits. IEEE Trans Circ Syst-II 52:675–679CrossRef
17.
go back to reference Abuelma’atti MT, Al-Absi MH (2005) A current conveyor-based relaxation oscillator as versatile electronic interface for capacitive and resistive sensors. Int J Electron 92:473–477CrossRef Abuelma’atti MT, Al-Absi MH (2005) A current conveyor-based relaxation oscillator as versatile electronic interface for capacitive and resistive sensors. Int J Electron 92:473–477CrossRef
18.
go back to reference Petrzela J, Slezak J (2008) Conservative chaos generators with CCII+ based on mathematic model of nonlinear oscillator. Radioengineering 17:19–24 Petrzela J, Slezak J (2008) Conservative chaos generators with CCII+ based on mathematic model of nonlinear oscillator. Radioengineering 17:19–24
19.
go back to reference Srinivasulu A (2011) A novel current conveyor-based schmitt trigger and its application as a realization oscillator. Int J Circ Theor Appl 39:679–686CrossRef Srinivasulu A (2011) A novel current conveyor-based schmitt trigger and its application as a realization oscillator. Int J Circ Theor Appl 39:679–686CrossRef
20.
go back to reference Sanchez-Lopez C, Munoz-Pacheco JM, Carbajal-Gomez VH, Trejo-Guerra R, Ramirez-Soto C, Echeverria-Solis S, and Tlelo-Cuautle E (2011) Design and applications of continuous-time chaos generators. In: Tlelo Cuautle E (ed) Chaotic systems book. Intech, Croatia 10:227–254 Sanchez-Lopez C, Munoz-Pacheco JM, Carbajal-Gomez VH, Trejo-Guerra R, Ramirez-Soto C, Echeverria-Solis S, and Tlelo-Cuautle E (2011) Design and applications of continuous-time chaos generators. In: Tlelo Cuautle E (ed) Chaotic systems book. Intech, Croatia 10:227–254
21.
go back to reference Monpapassorn A (2013) Low output impedance dual CCII full-wave rectifier. Int J Electron 100:648–654CrossRef Monpapassorn A (2013) Low output impedance dual CCII full-wave rectifier. Int J Electron 100:648–654CrossRef
22.
go back to reference Marcellis AD, Carlo CD, Ferri G, Stornelli V (2013) A CCII-based wide frequency range square waveform generator. Int J Circ Theor Appl 41:1–13 Marcellis AD, Carlo CD, Ferri G, Stornelli V (2013) A CCII-based wide frequency range square waveform generator. Int J Circ Theor Appl 41:1–13
23.
go back to reference Almashary B, Alhokail H (2000) Current-mode triangular wave generator using CCIIs. Microelectron J 31:239–243CrossRef Almashary B, Alhokail H (2000) Current-mode triangular wave generator using CCIIs. Microelectron J 31:239–243CrossRef
24.
go back to reference Senani R, Gupta SS (1998) Implementation of Chua’s chaotic circuit using current feedback op-amps. Electron Lett 34:829–830CrossRef Senani R, Gupta SS (1998) Implementation of Chua’s chaotic circuit using current feedback op-amps. Electron Lett 34:829–830CrossRef
25.
go back to reference Abuelma’atti MT (2002) New ASK/FSK/PSK/QAM wave generator using a single current–controlled multiple output current conveyor. Int J Electron 89:35–43CrossRef Abuelma’atti MT (2002) New ASK/FSK/PSK/QAM wave generator using a single current–controlled multiple output current conveyor. Int J Electron 89:35–43CrossRef
26.
go back to reference Bruun E, Haxthausen EU (1991) Current conveyor based EMG amplifier with shutdown control. Electron Lett 27:2172–2174CrossRef Bruun E, Haxthausen EU (1991) Current conveyor based EMG amplifier with shutdown control. Electron Lett 27:2172–2174CrossRef
27.
go back to reference Sinsky JH, Westgate CR (1996) A new approach to designing active MMIC tuning element using second-generation current conveyor. IEEE Microw Guided wave Lett 6:326–328CrossRef Sinsky JH, Westgate CR (1996) A new approach to designing active MMIC tuning element using second-generation current conveyor. IEEE Microw Guided wave Lett 6:326–328CrossRef
28.
go back to reference Popovic J, Pavasovic A, Vasiljevic D (1997) Low-power CMOS current-conveyor relaxation oscillators. IEEE Trans Ultra Ferro Freq Cont 44:895–901CrossRef Popovic J, Pavasovic A, Vasiljevic D (1997) Low-power CMOS current-conveyor relaxation oscillators. IEEE Trans Ultra Ferro Freq Cont 44:895–901CrossRef
29.
go back to reference Sampietro M, Bertuccio G (1998) Zero-power current conveyor for DC stabilization and system reset of fast current pulse amplifiers. Electron Lett 34:1801–1802CrossRef Sampietro M, Bertuccio G (1998) Zero-power current conveyor for DC stabilization and system reset of fast current pulse amplifiers. Electron Lett 34:1801–1802CrossRef
30.
go back to reference Vlassis S, Siskos S (2000) An interfacing circuit for piezo-resistive pressure sensors with frequency output. Int J Electron 87:119–127CrossRef Vlassis S, Siskos S (2000) An interfacing circuit for piezo-resistive pressure sensors with frequency output. Int J Electron 87:119–127CrossRef
31.
go back to reference Monpapassorn A (2000) A method for biasing a temperature independent current conveyor precision rectifier. Thammasat Int J Sc Tech 5:10–15 Monpapassorn A (2000) A method for biasing a temperature independent current conveyor precision rectifier. Thammasat Int J Sc Tech 5:10–15
32.
go back to reference Rajput SS, Jamuar SS (2001) CCII based low voltage CMOS current sources for space plasma probes. Measure Sc Tech 12:N39–N43CrossRef Rajput SS, Jamuar SS (2001) CCII based low voltage CMOS current sources for space plasma probes. Measure Sc Tech 12:N39–N43CrossRef
33.
go back to reference Acharya YB (2005) Current conveyor based electrometer. Int J Electron Commun (AEU) 59:413–416CrossRef Acharya YB (2005) Current conveyor based electrometer. Int J Electron Commun (AEU) 59:413–416CrossRef
34.
go back to reference Maitreechit S, Monpapassorn A (2005) A full-wave rectifier using a current conveyor and current mirrors with improved efficiency. Thammasat Int J Sc Tech 10:21–27 Maitreechit S, Monpapassorn A (2005) A full-wave rectifier using a current conveyor and current mirrors with improved efficiency. Thammasat Int J Sc Tech 10:21–27
35.
go back to reference Gift SJG (2005) New precision rectifier circuits with high accuracy and wide bandwidth. Int J Electron 92:601–617CrossRef Gift SJG (2005) New precision rectifier circuits with high accuracy and wide bandwidth. Int J Electron 92:601–617CrossRef
36.
go back to reference Djukie SR (2008) Full-wave current conveyor precision rectifier. Serbian J Electr Eng 5:263–271CrossRef Djukie SR (2008) Full-wave current conveyor precision rectifier. Serbian J Electr Eng 5:263–271CrossRef
37.
go back to reference Kumngern M, Dejhan K (2008) Current conveyor-based versatile precision rectifier. WSEAS Trans Circ Syst 7:1070–1079 Kumngern M, Dejhan K (2008) Current conveyor-based versatile precision rectifier. WSEAS Trans Circ Syst 7:1070–1079
38.
go back to reference Dukic S (2009) Temperature independent current conveyor precision full-wave rectifier for low-level signal. Ser Elec Energ 22:117–123 Dukic S (2009) Temperature independent current conveyor precision full-wave rectifier for low-level signal. Ser Elec Energ 22:117–123
39.
go back to reference Guerra RT, Cuautle ET, Hernandez C, Lopez CS (2009) Chaotic communication system using Chua’s oscillators realized with CCII+ s. Int J Bifurcation Chaos 19:4217CrossRef Guerra RT, Cuautle ET, Hernandez C, Lopez CS (2009) Chaotic communication system using Chua’s oscillators realized with CCII+ s. Int J Bifurcation Chaos 19:4217CrossRef
40.
go back to reference Beg P, Khan IA, Maheshwari S (2012) Biphase amplifier based precision rectifiers using current conveyors. Int J Comput Appl 42:14–18 Beg P, Khan IA, Maheshwari S (2012) Biphase amplifier based precision rectifiers using current conveyors. Int J Comput Appl 42:14–18
41.
go back to reference Petrovic PB (2013) A new precision peak detector/full-wave rectifier. J Sig Inform Process 4:72–81CrossRef Petrovic PB (2013) A new precision peak detector/full-wave rectifier. J Sig Inform Process 4:72–81CrossRef
42.
go back to reference Misurec J, Koton J (2012) Schmitt trigger with controllable hysteresis using current conveyors. Int J Adv Telecomm Electron Sig Syst 1:26–30 Misurec J, Koton J (2012) Schmitt trigger with controllable hysteresis using current conveyors. Int J Adv Telecomm Electron Sig Syst 1:26–30
43.
go back to reference Srinivasulu A (2012) Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. Int J Design Anal Tools Integr Circ Syst 3:1–7 Srinivasulu A (2012) Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. Int J Design Anal Tools Integr Circ Syst 3:1–7
44.
go back to reference Kubanek D, Khateb F, Vrba K (2013) Square wave generator with voltage-controlled frequency based on universal current conveyor. Przeglad Elektrotechniczny R 89:191–194 Kubanek D, Khateb F, Vrba K (2013) Square wave generator with voltage-controlled frequency based on universal current conveyor. Przeglad Elektrotechniczny R 89:191–194
Metadata
Title
Nonlinear Applications of CCs
Authors
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_8