Skip to main content
Top
Published in: Energy Systems 3/2016

01-08-2016 | Original Paper

Nonlinear control of wind turbine with optimal power capture and load mitigation

Authors: R. Saravanakumar, Debashisha Jena

Published in: Energy Systems | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main control objectives associated with the variable speed wind turbine is to extract maximum power at below rated wind speed (region 2) and to regulate the power at above rated wind speed (region 3). This paper proposes a nonlinear framework to achieve the above two control objectives. The paper discusses about the application of an integral sliding mode control (ISMC) in region 2 and a fuzzy based proportional integral (PI) control in region 3. Same ISMC is adopted for the stable switching between operating regions (transition region 2.5) and the control input maintains the continuity at the instant of switching. Lyapunov stability criterion is used to prove the stability of ISMC. The controllers are tested for different wind speed profiles with different turbulence component. Finally the performances of the proposed controllers are tested with nonlinear Fatigue, Aerodynamics, Structures, and Turbulence WT model and the results are compared with the existing baseline + PI controllers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Burton, T., et al.: Wind Energy Handbook. Wiley Publications, New York (2001)CrossRef Burton, T., et al.: Wind Energy Handbook. Wiley Publications, New York (2001)CrossRef
2.
go back to reference Bianchi, F.D., Battista, H.D., Mantz, R.J.: Wind turbine control systems: principles, modelling and gain scheduling design, 2nd edn. Springer, London (2006) Bianchi, F.D., Battista, H.D., Mantz, R.J.: Wind turbine control systems: principles, modelling and gain scheduling design, 2nd edn. Springer, London (2006)
3.
go back to reference Yazhou, L., Alan, M., et al.: Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. Energy Convers. 21(1), 257–264 (2011) Yazhou, L., Alan, M., et al.: Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. Energy Convers. 21(1), 257–264 (2011)
4.
go back to reference Song, Y.D., Dhinakaran, B., Bao, X.Y.: Variable speed control of wind turbines using nonlinear and adaptive algorithms. J. Wind Eng. Ind. Aerodyn. 85, 293–308 (2000)CrossRef Song, Y.D., Dhinakaran, B., Bao, X.Y.: Variable speed control of wind turbines using nonlinear and adaptive algorithms. J. Wind Eng. Ind. Aerodyn. 85, 293–308 (2000)CrossRef
5.
go back to reference Mingfu, L., Dong, L., et al.: Study on rotational speed feedback torque control for wind turbine generator system. In: Proceedings of International conference on energy and environment technology, Oct., 2009, pp. 853–856 Mingfu, L., Dong, L., et al.: Study on rotational speed feedback torque control for wind turbine generator system. In: Proceedings of International conference on energy and environment technology, Oct., 2009, pp. 853–856
6.
go back to reference Mansour, S., Shahnazi, R., Yousefi, A.N.: An optimal fuzzy PI controller to capture the maximum power for variable speed wind turbines. J. Neural Comput. Appl. 23, 1359–1368 (2012) Mansour, S., Shahnazi, R., Yousefi, A.N.: An optimal fuzzy PI controller to capture the maximum power for variable speed wind turbines. J. Neural Comput. Appl. 23, 1359–1368 (2012)
7.
go back to reference Østergaard, K.Z., Brath, P., Stoustrup, J.: Estimation of effective wind speed. J. Phys.: Conf. Ser. 75, 1–9 (2007) Østergaard, K.Z., Brath, P., Stoustrup, J.: Estimation of effective wind speed. J. Phys.: Conf. Ser. 75, 1–9 (2007)
8.
go back to reference Boukhezzar, B., Siguerdidjane, H., Hand, M.: Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization. ASME J. Solar Energy Eng. 128, 516–530 (2006)CrossRef Boukhezzar, B., Siguerdidjane, H., Hand, M.: Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization. ASME J. Solar Energy Eng. 128, 516–530 (2006)CrossRef
9.
go back to reference Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Trans. Energy Convers. 26(1), 149–162 (2011)CrossRef Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Trans. Energy Convers. 26(1), 149–162 (2011)CrossRef
10.
go back to reference Beltran, B., Ahmed-Ali, T., Benbouzid M.: High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3321 (2009) Beltran, B., Ahmed-Ali, T., Benbouzid M.: High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3321 (2009)
11.
go back to reference Khamlichi, A., et al.: Advanced control based on extended Kalman filter for variable speed wind turbine. Aust. J. Basic Appl. Sci. 5(9), 636–644 (2011) Khamlichi, A., et al.: Advanced control based on extended Kalman filter for variable speed wind turbine. Aust. J. Basic Appl. Sci. 5(9), 636–644 (2011)
12.
go back to reference Ćirić, I., et al.: Hybrid fuzzy control strategies for variable speed wind turbines. Facta Univ. Ser.: Autom. Control Robot. 10(2), 205–217 (2011)MathSciNet Ćirić, I., et al.: Hybrid fuzzy control strategies for variable speed wind turbines. Facta Univ. Ser.: Autom. Control Robot. 10(2), 205–217 (2011)MathSciNet
13.
go back to reference Ronilson, R.: A sensorless control of variable speed wind turbine operating at partial load. Renew. Energy 36(1), 132–141 (2011)CrossRef Ronilson, R.: A sensorless control of variable speed wind turbine operating at partial load. Renew. Energy 36(1), 132–141 (2011)CrossRef
14.
go back to reference Xu, Z., Hu, Q., Mehrdad, E.: Estimation of effective wind speed for fixed-speed wind turbines based on frequency domain data fusion. IEEE Trans. Sustain. Energy 3(2), 57–64 (2012) Xu, Z., Hu, Q., Mehrdad, E.: Estimation of effective wind speed for fixed-speed wind turbines based on frequency domain data fusion. IEEE Trans. Sustain. Energy 3(2), 57–64 (2012)
15.
go back to reference Boukhezzar, B., Lupu, L., et al.: Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 32, 1273–1287 (2006)CrossRef Boukhezzar, B., Lupu, L., et al.: Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 32, 1273–1287 (2006)CrossRef
16.
go back to reference Rubio, J.O.M., Aguilar, L.T.: Maximizing the performance of variable speed wind turbine with nonlinear output feedback control. Procedia Eng. 35, 31–40 (2012) Rubio, J.O.M., Aguilar, L.T.: Maximizing the performance of variable speed wind turbine with nonlinear output feedback control. Procedia Eng. 35, 31–40 (2012)
17.
go back to reference Zhang, X., Xu, D., Liu, Y.: Intelligent control of a large variable speed wind turbine. J. Sol. Energy Eng. 134, 305–311 (2012) Zhang, X., Xu, D., Liu, Y.: Intelligent control of a large variable speed wind turbine. J. Sol. Energy Eng. 134, 305–311 (2012)
18.
go back to reference Hamidreza, J., Jeff, P., Julian, E.: Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network. IEEE Trans. Control Syst. Technol. 21(6), 2264–2272 (2013)CrossRef Hamidreza, J., Jeff, P., Julian, E.: Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network. IEEE Trans. Control Syst. Technol. 21(6), 2264–2272 (2013)CrossRef
19.
go back to reference Zhang, W., Hongze X.U.: Active disturbance rejection based pitch control of variable speed wind turbine. In: Proceedings of 30th Chinese control conference, 2011, pp. 5094–5098 Zhang, W., Hongze X.U.: Active disturbance rejection based pitch control of variable speed wind turbine. In: Proceedings of 30th Chinese control conference, 2011, pp. 5094–5098
20.
go back to reference Alshehri, A., Afef, F.: Pitch control design for optimum energy capture in variable-speed wind turbines. In: Proceedings of 2013 10th International Multi-Conference on Systems, Signals & Devices, 2013, pp. 1–6 Alshehri, A., Afef, F.: Pitch control design for optimum energy capture in variable-speed wind turbines. In: Proceedings of 2013 10th International Multi-Conference on Systems, Signals & Devices, 2013, pp. 1–6
21.
go back to reference Ahmet, S.Y., Zafer, Ö.: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst. Appl. 36, 9767–9775 (2009)CrossRef Ahmet, S.Y., Zafer, Ö.: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst. Appl. 36, 9767–9775 (2009)CrossRef
22.
go back to reference Hamidreza, J., Jeff, P.: Gain scheduled \(\ell _1 \) optimal control for variable speed variable pitch wind turbines. IEEE Trans. Control Syst. Technol. 23(1), 372–379 (2015)CrossRef Hamidreza, J., Jeff, P.: Gain scheduled \(\ell _1 \) optimal control for variable speed variable pitch wind turbines. IEEE Trans. Control Syst. Technol. 23(1), 372–379 (2015)CrossRef
23.
go back to reference Greg, S., Sigitas, R., Tuhin, D.: Nonlinear system analysis and control of variable speed wind turbine for multiregime operation. J. Dyn. Syst. Meas. Control 137, 1–10 (2015) Greg, S., Sigitas, R., Tuhin, D.: Nonlinear system analysis and control of variable speed wind turbine for multiregime operation. J. Dyn. Syst. Meas. Control 137, 1–10 (2015)
24.
go back to reference Bermudez, L., Velazquez, A., Matesanz, A.: Numerical simulation of unsteady aerodynamics effects in horizontal-axis wind turbines. J. Sol. Energy 68(1), 9–21 (2000)CrossRef Bermudez, L., Velazquez, A., Matesanz, A.: Numerical simulation of unsteady aerodynamics effects in horizontal-axis wind turbines. J. Sol. Energy 68(1), 9–21 (2000)CrossRef
25.
go back to reference Kassem, A.M.: Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control. Energy Syst. 3(3), 303–323 (2002)MathSciNetCrossRef Kassem, A.M.: Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control. Energy Syst. 3(3), 303–323 (2002)MathSciNetCrossRef
26.
go back to reference Das, A.K.: An empirical model of power curve of a wind turbine. Energy Syst. 5(3), 507–518 (2014)CrossRef Das, A.K.: An empirical model of power curve of a wind turbine. Energy Syst. 5(3), 507–518 (2014)CrossRef
27.
go back to reference NREL Report.: Wind turbine control design to reduce capital costs (2009) NREL Report.: Wind turbine control design to reduce capital costs (2009)
28.
go back to reference Rsio-R Report.: Control design for a pitch regulated variable speed wind turbine (2005) Rsio-R Report.: Control design for a pitch regulated variable speed wind turbine (2005)
29.
go back to reference NREL Report.: Integrating wind turbine design (2006) NREL Report.: Integrating wind turbine design (2006)
30.
go back to reference NREL Report.: Controls advanced research turbine (CART) commissioning and baseline data collection (2002) NREL Report.: Controls advanced research turbine (CART) commissioning and baseline data collection (2002)
31.
go back to reference Ottersten, O.: On control of back-to-back converters and sensor less induction machine drives. Ph.D. thesis, Chalmers Univ. Technol. (2003) Ottersten, O.: On control of back-to-back converters and sensor less induction machine drives. Ph.D. thesis, Chalmers Univ. Technol. (2003)
32.
go back to reference Pena, R., et al.: A cage induction generator using back to back PWM converters for variable speed grid connected wind energy systems. In: Proceedings of IECON 2001, pp. 1376–1381 Pena, R., et al.: A cage induction generator using back to back PWM converters for variable speed grid connected wind energy systems. In: Proceedings of IECON 2001, pp. 1376–1381
33.
Metadata
Title
Nonlinear control of wind turbine with optimal power capture and load mitigation
Authors
R. Saravanakumar
Debashisha Jena
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Energy Systems / Issue 3/2016
Print ISSN: 1868-3967
Electronic ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-015-0170-8

Other articles of this Issue 3/2016

Energy Systems 3/2016 Go to the issue