Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

19-02-2019 | Issue 3/2019

Journal of Materials Engineering and Performance 3/2019

Nonlinear Creep Deformation of Polycarbonate at High Stress Level: Experimental Investigation and Finite Element Modeling

Journal:
Journal of Materials Engineering and Performance > Issue 3/2019
Authors:
Daiki Ikeshima, Akihiro Matsuzaki, Takumi Nagakura, Kanako Emori, Akio Yonezu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

It is well known that polycarbonate (PC) undergoes time-dependent deformation (i.e., creep deformation), and nonlinear creep deformation is often experienced at high stress level. Using the time–temperature–stress superposition principle (TTSSP), we obtain a new master curve, which covers higher stress level, and successfully establish a new modeling method of creep deformation of PC. First, to investigate the effect of applied stress level on the creep compliance (i.e., stress-dependent nonlinear creep deformation), this study conducted various creep tests with eight different stress levels. We found that the creep compliance curve strongly depended on the applied stress level; in particular, a higher stress level induced a larger difference in creep compliance. According to the TTSSP, the creep compliance curve at each stress level shifts with the creep time (i.e., stress reduced time). When we appropriately selected the stress reduced time, we obtained the master curve of creep compliance, which is unified with respect to various applied stresses. However, we found that the stress-shifted factor is not compliant with the previous TTSSP, especially in the higher stress regime. Therefore, this regime was also considered to obtain a new master curve that can cover a wide range of stress levels. Finally, our established creep model (master curve and stress shift factor) was introduced into FEM, and then this numerical model was verified by comparison with experimental data. Our model may be useful for predicting the creep deformation of PC subjected to a wide range of applied stresses.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partner

    Image Credits