Skip to main content
Top

2024 | OriginalPaper | Chapter

Nonlinear Dynamics, Stability and Control Strategies: Mathematical Modeling on the Big Data Analyses of Covid-19 in Poland

Authors : Liliya Batyuk, Natalia Kizilova

Published in: Perspectives in Dynamical Systems I — Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Detailed numerical data on covid-19 epidemic have been collected since February 2020, and now >200 countries and regions are presented in online databases. A brief review of the data analyses and mathematical modelling for different countries is given. The time series on four “waves” of pandemic in 16 provinces of Poland are analyzed. Statistical regularities, self- and cross-correlations, common and different features in the regions are revealed. Spectral analysis of oscillating components and phase curves demonstrated non-linear quasi-regular and chaotic dynamics. Based on the comparative analyses of the 7-day averaged curves, the non-linear SEIDQRV model with time delay was estimated as the most proper mathematical model. Material parameters of the model for each “wave” and region have been used for stability analysis and controllability of the pandemic. The reproduction number for each region/wave have been obtained as the stability criterion for the systems of equations of the SIR, SIRS, SEIR, SEIRS, SEIDQR models with and without time delay. Sensitivity of the models to different control functions (social restrictions, lockdown measures, availability/quality of medical treatment, vaccination level) revealed different sets of the most influencing parameters in different provinces and waves. The results are compared for similar data for Poland and other European countries. It is shown; the nonlinear dynamics and best control strategies differ at the level of the country and its regions that needs more complex local governmental measures against further development of the pandemic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Sharma, S., Volpert, V., Banerjee, M.: Extended SEIQR type model for COVID-19 epidemic and data analysis. Mathematical Biosciences and Engineering 17(6), 7562–7604 (2020).MathSciNetCrossRef Sharma, S., Volpert, V., Banerjee, M.: Extended SEIQR type model for COVID-19 epidemic and data analysis. Mathematical Biosciences and Engineering 17(6), 7562–7604 (2020).MathSciNetCrossRef
4.
go back to reference Machado, T., Ma, J.: Nonlinear dynamics of COVID-19 pandemic: modeling, control, and future perspectives. Nonlinear Dynamics 101, 1525–1526 (2020).CrossRef Machado, T., Ma, J.: Nonlinear dynamics of COVID-19 pandemic: modeling, control, and future perspectives. Nonlinear Dynamics 101, 1525–1526 (2020).CrossRef
5.
go back to reference Radulescu, A., Williams, C., Cavanagh, K.: Management strategies in a SEIR-type model of COVID 19 community spread. Nature 10, 21256 (2020). Radulescu, A., Williams, C., Cavanagh, K.: Management strategies in a SEIR-type model of COVID 19 community spread. Nature 10, 21256 (2020).
6.
go back to reference Bernoulli, D., Reflexions sur les avantages de l’inoculation. Mercure de Paris. 173 (1760). Bernoulli, D., Reflexions sur les avantages de l’inoculation. Mercure de Paris. 173 (1760).
7.
go back to reference Bernoulli, D., Essai d’une nouvelle analyse de la mortalité cause par la petite vérole et des avantages de l’inoculation pour la prévenir. Histoire de l’académie royale des sciences avec les mémoires de mathématique et de physique tirés des registres de cette académie. Paris (1766). Bernoulli, D., Essai d’une nouvelle analyse de la mortalité cause par la petite vérole et des avantages de l’inoculation pour la prévenir. Histoire de l’académie royale des sciences avec les mémoires de mathématique et de physique tirés des registres de cette académie. Paris (1766).
8.
go back to reference Bacaër, N., A Short History of Mathematical Population Dynamics. Springer-Verlag, London (2011).CrossRef Bacaër, N., A Short History of Mathematical Population Dynamics. Springer-Verlag, London (2011).CrossRef
9.
go back to reference Fine, P.E.M., John Brownlee and the Measurement of Infectiousness: An Historical Study in Epidemic Theory, Journal of the Royal Statistical Society. Ser.A 142(3), 347–362 (1979).MathSciNetCrossRef Fine, P.E.M., John Brownlee and the Measurement of Infectiousness: An Historical Study in Epidemic Theory, Journal of the Royal Statistical Society. Ser.A 142(3), 347–362 (1979).MathSciNetCrossRef
10.
go back to reference Farr, W., Causes of death in England and Wales. Second Annual Report of the Registrar General of Births, Deaths and Marriages in England 2, 69–98 (1840). Farr, W., Causes of death in England and Wales. Second Annual Report of the Registrar General of Births, Deaths and Marriages in England 2, 69–98 (1840).
11.
go back to reference Hamer, W.H., The Milroy Lectures on Epidemic Disease in England: the Evidence of Variability and of Persistency of Type, Bedford Press (1906). Hamer, W.H., The Milroy Lectures on Epidemic Disease in England: the Evidence of Variability and of Persistency of Type, Bedford Press (1906).
12.
go back to reference Brownlee, J., Statistical studies in immunity. The theory of an epidemic. Proc. Roy. Soc. Edinburgh, 26, 484–521 (1907). Brownlee, J., Statistical studies in immunity. The theory of an epidemic. Proc. Roy. Soc. Edinburgh, 26, 484–521 (1907).
13.
go back to reference Ross, R., Report on the Prevention of Malaria in Mauritius. Waterlow and Sons, London (1908). Ross, R., Report on the Prevention of Malaria in Mauritius. Waterlow and Sons, London (1908).
14.
go back to reference Ross, R., An application of the theory of probabilities to the study of a priori pathometry. Part I, Proc. R. Soc. A, Contain. Pap. Math. Phys. Charact. 92(638), 204–230 (1916). Ross, R., An application of the theory of probabilities to the study of a priori pathometry. Part I, Proc. R. Soc. A, Contain. Pap. Math. Phys. Charact. 92(638), 204–230 (1916).
15.
go back to reference McKendrick, A., The rise and fall of epidemics, Paludism 1, 54–66 (1912). McKendrick, A., The rise and fall of epidemics, Paludism 1, 54–66 (1912).
16.
go back to reference Richards, F.J., “A Flexible Growth Function for Empirical Use”. J. Experim. Botany, 10(2), 290–300 (1959).CrossRef Richards, F.J., “A Flexible Growth Function for Empirical Use”. J. Experim. Botany, 10(2), 290–300 (1959).CrossRef
17.
go back to reference Ohnishi, A., Namekawa, Y., Fukui, T., Universality in COVID-19 spread in view of the Gompertz function. Prog. Theor. Exp. Phys., 123, J01 (2020). Ohnishi, A., Namekawa, Y., Fukui, T., Universality in COVID-19 spread in view of the Gompertz function. Prog. Theor. Exp. Phys., 123, J01 (2020).
18.
go back to reference Aviv-Sharon, E., Aharoni, A., Generalized logistic growth modeling of the COVID-19 pandemic in Asia. Infectious Disease Modelling, 5, 502–509 (2020).CrossRef Aviv-Sharon, E., Aharoni, A., Generalized logistic growth modeling of the COVID-19 pandemic in Asia. Infectious Disease Modelling, 5, 502–509 (2020).CrossRef
19.
go back to reference Kermark, M., Mckendrick, A., Contributions to the mathematical theory of epidemics I. Proc. R. Soc. Lond. Ser. A. 115(5), 700–721 (1927). Kermark, M., Mckendrick, A., Contributions to the mathematical theory of epidemics I. Proc. R. Soc. Lond. Ser. A. 115(5), 700–721 (1927).
20.
go back to reference Brown, D., Rothery, P., Models in Biology: Mathematics, Statistics and Computing. Wiley&Sons, NY. 13–14, (1993). Brown, D., Rothery, P., Models in Biology: Mathematics, Statistics and Computing. Wiley&Sons, NY. 13–14, (1993).
21.
go back to reference Soper, H. E. Interpretation of periodicity in disease prevalence, J. Royal Statist. Soc. Ser. A, 92, 34–73 (1929).CrossRef Soper, H. E. Interpretation of periodicity in disease prevalence, J. Royal Statist. Soc. Ser. A, 92, 34–73 (1929).CrossRef
22.
23.
go back to reference Kendall, D. Deterministic and stochastic epidemics in closed populations. Proc. 3rd Berkeley Symp. Math. Statist. Prob. 4, 149–165 (1956). Kendall, D. Deterministic and stochastic epidemics in closed populations. Proc. 3rd Berkeley Symp. Math. Statist. Prob. 4, 149–165 (1956).
24.
go back to reference Kendall, D. G., Discussion of “Measles periodicity and community size” by M.S. Bartlett. J. Royal Statistical Society, A120: 48–70 (1957). Kendall, D. G., Discussion of “Measles periodicity and community size” by M.S. Bartlett. J. Royal Statistical Society, A120: 48–70 (1957).
25.
26.
go back to reference Waaler, H., Geser, A., Andersen, S., The Use of Mathematical Models in the Study of the Epidemiology of Tuberculosis. Am J Public Health Nations Health. 52(6), 1002–1013 (1962).CrossRef Waaler, H., Geser, A., Andersen, S., The Use of Mathematical Models in the Study of the Epidemiology of Tuberculosis. Am J Public Health Nations Health. 52(6), 1002–1013 (1962).CrossRef
27.
go back to reference ReVelle, C.S., Lynn, W.R., Feldmann, F., Mathematical models for the economic allocation of tuberculosis control activities in developing nations. Amer. Rev. Respir. Diseases. 96(5), 893–909 (1967). ReVelle, C.S., Lynn, W.R., Feldmann, F., Mathematical models for the economic allocation of tuberculosis control activities in developing nations. Amer. Rev. Respir. Diseases. 96(5), 893–909 (1967).
28.
29.
go back to reference Bailey N.T.J., Some problems in the statistical analysis of epidemic data, Jour. Roy. Stat. Soc., Ser. B, Vol. 17 (1955), pp. 35–68. Bailey N.T.J., Some problems in the statistical analysis of epidemic data, Jour. Roy. Stat. Soc., Ser. B, Vol. 17 (1955), pp. 35–68.
30.
go back to reference Bailey, N.T.J., The Mathematical Theory of Infectious Diseases and its Applications, (2nd Edition). London: Charles Griffin (1975). Bailey, N.T.J., The Mathematical Theory of Infectious Diseases and its Applications, (2nd Edition). London: Charles Griffin (1975).
31.
go back to reference Bohner, M., Streipert, S., Torres, D.F.M., Exact Solution to a Dynamic SIR Model. Nonlinear Analysis: Hybrid Systems. 32, 228–238 (2019).MathSciNet Bohner, M., Streipert, S., Torres, D.F.M., Exact Solution to a Dynamic SIR Model. Nonlinear Analysis: Hybrid Systems. 32, 228–238 (2019).MathSciNet
32.
go back to reference Hethcote, H.W., Three Basic Epidemiological Models. S. A. Levin et al. (eds.), Applied Mathematical Ecology. Springer-Verlag Berlin Heidelberg. 119–127 (1989).CrossRef Hethcote, H.W., Three Basic Epidemiological Models. S. A. Levin et al. (eds.), Applied Mathematical Ecology. Springer-Verlag Berlin Heidelberg. 119–127 (1989).CrossRef
33.
go back to reference Brauer, F., Mathematical epidemiology: Past, present, and future. Infect. Dis. Model. 2(2), 113–127 (2017). Brauer, F., Mathematical epidemiology: Past, present, and future. Infect. Dis. Model. 2(2), 113–127 (2017).
34.
go back to reference He, X., Lau, E.H.Y., Wu, P., et al., Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat Med 26, 672–675 (2020).CrossRef He, X., Lau, E.H.Y., Wu, P., et al., Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat Med 26, 672–675 (2020).CrossRef
35.
go back to reference Chun, J.Y., Baek, G., Kim, Y., Transmission onset distribution of COVID-19, Intern. J. Infect. Dis., 99, 403–407 (2020).CrossRef Chun, J.Y., Baek, G., Kim, Y., Transmission onset distribution of COVID-19, Intern. J. Infect. Dis., 99, 403–407 (2020).CrossRef
36.
go back to reference Aldila, D., S.H.A. Khoshnaw, E. Safitri, et al., A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia, Chaos, Solitons & Fractals, 139, 110042 (2020).MathSciNetCrossRef Aldila, D., S.H.A. Khoshnaw, E. Safitri, et al., A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia, Chaos, Solitons & Fractals, 139, 110042 (2020).MathSciNetCrossRef
37.
go back to reference Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C., Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak, PLoS One, 15(3), e0230405 (2020).CrossRef Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C., Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak, PLoS One, 15(3), e0230405 (2020).CrossRef
38.
go back to reference Kucharski, A.J., Russell, T.W., Diamond, C., et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect Dis., 20(5), 553–558 (2020).CrossRef Kucharski, A.J., Russell, T.W., Diamond, C., et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect Dis., 20(5), 553–558 (2020).CrossRef
39.
go back to reference Wu, J.T., Leung, K., Leung, G.M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395(10225), 689–697 (2020).CrossRef Wu, J.T., Leung, K., Leung, G.M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395(10225), 689–697 (2020).CrossRef
40.
41.
go back to reference Biala T.A., Khaliq A.Q.M. A fractional-order compartmental model for the spread of the COVID-19 pandemic, Commun. Nonlinear Sci. Numer. Simulat., 98, 105764 (2021).MathSciNetCrossRef Biala T.A., Khaliq A.Q.M. A fractional-order compartmental model for the spread of the COVID-19 pandemic, Commun. Nonlinear Sci. Numer. Simulat., 98, 105764 (2021).MathSciNetCrossRef
42.
go back to reference Bahloul, M, Chahid, A, Laleg-Kirati, T-M., Fractional-order SEIQRDP model for simulating the dynamics of COVID-19 epidemic, IEEE Open J. Eng. Med. Biol., 1, 249–256 (2020).CrossRef Bahloul, M, Chahid, A, Laleg-Kirati, T-M., Fractional-order SEIQRDP model for simulating the dynamics of COVID-19 epidemic, IEEE Open J. Eng. Med. Biol., 1, 249–256 (2020).CrossRef
44.
go back to reference Big Data Analysis: New Algorithms for a New Society, ed. by N. Japkowicz, J. Stefanowski, Springer (2016). Big Data Analysis: New Algorithms for a New Society, ed. by N. Japkowicz, J. Stefanowski, Springer (2016).
45.
go back to reference Kizilova, N., Blood flow in arteries: regular and chaotic dynamics, In: Dynamical systems. Applications, ed. by Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, K., Lodz Politechnical University, 69–80 (2013). Kizilova, N., Blood flow in arteries: regular and chaotic dynamics, In: Dynamical systems. Applications, ed. by Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, K., Lodz Politechnical University, 69–80 (2013).
46.
go back to reference Kizilova, N., Karpinsky, M., Karpinska, E., Quasi-regular and chaotic dynamics of postural sway in human, In: Applied Non-Linear Dynamical Systems, ed. by Jan Awrejcewicz, Springer Proceedings in Mathematics & Statistics, Vol. 93, 103–114 (2014). Kizilova, N., Karpinsky, M., Karpinska, E., Quasi-regular and chaotic dynamics of postural sway in human, In: Applied Non-Linear Dynamical Systems, ed. by Jan Awrejcewicz, Springer Proceedings in Mathematics & Statistics, Vol. 93, 103–114 (2014).
48.
go back to reference Kowalski, P.A., Szwagrzyk, M., Kielpinska, J., Konior, A., Kusy, M., Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland, Ecol. Informatics, 63, 101284 (2021).CrossRef Kowalski, P.A., Szwagrzyk, M., Kielpinska, J., Konior, A., Kusy, M., Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland, Ecol. Informatics, 63, 101284 (2021).CrossRef
49.
go back to reference Charkiewicz, R., Niklinski, J., Biecek, P., The first SARS-CoV-2 genetic variants of concern (VOC) in Poland: The concept of a comprehensive approach to monitoring and surveillance of emerging variants, Advances in Med. Sci., 66, 237–245 (2021).CrossRef Charkiewicz, R., Niklinski, J., Biecek, P., The first SARS-CoV-2 genetic variants of concern (VOC) in Poland: The concept of a comprehensive approach to monitoring and surveillance of emerging variants, Advances in Med. Sci., 66, 237–245 (2021).CrossRef
Metadata
Title
Nonlinear Dynamics, Stability and Control Strategies: Mathematical Modeling on the Big Data Analyses of Covid-19 in Poland
Authors
Liliya Batyuk
Natalia Kizilova
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56492-5_7

Premium Partners