Skip to main content
Top
Published in: Journal of Materials Science 21/2020

27-04-2020 | Computation & theory

Nonlinear elastic switch based on solid–solid phononic crystals

Authors: Farzaneh Motaei, Ali Bahrami

Published in: Journal of Materials Science | Issue 21/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mass density nonlinearity in a solid–solid phononic crystal and its effect on phononic band gap tunability are investigated. Also, a phononic On–Off switch is designed based on nonlinear phononic crystals. The proposed switch is formed of tungsten scatterers with a square arrangement, embedded in a poly methyl methacrylate background. Also, this structure contains a linear channel that creates a defect mode in the phononic band gap. Increment of input intensity causes the wave propagation medium to be dynamic. This effect allows phononic band gap to be tuned, and the defect mode frequency of the linear channel to be shifted to higher frequencies. Due to these features, the On–Off switch is designed and controlled by the excitation wave intensity. In the linear regime the switch is On, and by increasing the intensity of applied wave, it becomes Off. To the best of our knowledge, this is the first time a nonlinear phononic crystal switch is proposed. The calculated extinction ratio for the proposed structure is equal to − 19.96 dB, which seems to be suitable for switching applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khelif A, Adibi A (2015) Phononic crystals: fundamentals and applications. Springer, Berlin Khelif A, Adibi A (2015) Phononic crystals: fundamentals and applications. Springer, Berlin
2.
go back to reference He ZC, Li E, Wang G, Li GY, Xia Z (2016) Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech 227:3015–3030CrossRef He ZC, Li E, Wang G, Li GY, Xia Z (2016) Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech 227:3015–3030CrossRef
3.
go back to reference Li E, He ZC, Wang G, Liu GR (2017) An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion. Comput Mech 60:983–996CrossRef Li E, He ZC, Wang G, Liu GR (2017) An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion. Comput Mech 60:983–996CrossRef
4.
go back to reference Li E, He ZC, Wang G, Liu GR (2018) An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals. Comput Method Appl M 333:421–442CrossRef Li E, He ZC, Wang G, Liu GR (2018) An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals. Comput Method Appl M 333:421–442CrossRef
5.
go back to reference Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V (2006) Complete band gaps in two-dimensional phononic crystal slabs. Phys Rev E 74(4):046610CrossRef Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V (2006) Complete band gaps in two-dimensional phononic crystal slabs. Phys Rev E 74(4):046610CrossRef
6.
go back to reference Daraio C, Nesterenko V, Jin S (2004) Strongly nonlinear waves in 3D phononic crystals. AIP Conf Proc AIP 706:197–200CrossRef Daraio C, Nesterenko V, Jin S (2004) Strongly nonlinear waves in 3D phononic crystals. AIP Conf Proc AIP 706:197–200CrossRef
7.
go back to reference Daraio C, Nesterenko VF, Herbold EB, Jin S (2006) Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys Rev E 73(2):026610CrossRef Daraio C, Nesterenko VF, Herbold EB, Jin S (2006) Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys Rev E 73(2):026610CrossRef
8.
go back to reference Boechler N, Yang J, Theocharis G, Kevrekidis PG, Daraio C (2011) Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells. J Appl Phys 109(7):074906CrossRef Boechler N, Yang J, Theocharis G, Kevrekidis PG, Daraio C (2011) Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells. J Appl Phys 109(7):074906CrossRef
9.
go back to reference Wang YZ, Wang YS (2018) Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78:1–8CrossRef Wang YZ, Wang YS (2018) Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78:1–8CrossRef
10.
go back to reference Liu H, Huo SY, Feng LY, Huang HB, Chen JJ (2019) Thermally tunable topological edge states for in-plane bulk waves in solid phononic crystals. Ultrasonics 94:227–234CrossRef Liu H, Huo SY, Feng LY, Huang HB, Chen JJ (2019) Thermally tunable topological edge states for in-plane bulk waves in solid phononic crystals. Ultrasonics 94:227–234CrossRef
11.
go back to reference Choi MJ, Oh MH, Koo B, Cho S (2019) Optimal design of lattice structures for controllable extremal band gaps. Sci Rep 9(1):1–13CrossRef Choi MJ, Oh MH, Koo B, Cho S (2019) Optimal design of lattice structures for controllable extremal band gaps. Sci Rep 9(1):1–13CrossRef
12.
go back to reference Spadoni A, Daraio C, Hurst W, Brown M (2011) Nonlinear phononic crystals based on chains of disks alternating with toroidal structures. Appl Phys Lett 98(16):161901CrossRef Spadoni A, Daraio C, Hurst W, Brown M (2011) Nonlinear phononic crystals based on chains of disks alternating with toroidal structures. Appl Phys Lett 98(16):161901CrossRef
13.
go back to reference Banerjee A, Das R, Calius EP (2019) Waves in structured mediums or metamaterials: a review. Arch Comput Methods Eng 26(4):1029–1058CrossRef Banerjee A, Das R, Calius EP (2019) Waves in structured mediums or metamaterials: a review. Arch Comput Methods Eng 26(4):1029–1058CrossRef
14.
go back to reference Karathanasopoulos N, Reda H, Ganghoffer JF (2017) Designing two-dimensional metamaterials of controlled static and dynamic properties. Comput Mater Sci 138:323–332CrossRef Karathanasopoulos N, Reda H, Ganghoffer JF (2017) Designing two-dimensional metamaterials of controlled static and dynamic properties. Comput Mater Sci 138:323–332CrossRef
15.
go back to reference Reda H, Karathanasopoulos N, Ganghoffer JF, Lakiss H (2018) Wave propagation characteristics of periodic structures accounting for the effect of their higher order inner material kinematics. J Sound Vib 431:265–275CrossRef Reda H, Karathanasopoulos N, Ganghoffer JF, Lakiss H (2018) Wave propagation characteristics of periodic structures accounting for the effect of their higher order inner material kinematics. J Sound Vib 431:265–275CrossRef
16.
go back to reference Reda H, Karathanasopoulos N, Elnady K, Ganghoffer JF, Lakiss H (2018) The role of anisotropy on the static and wave propagation characteristics of two-dimensional architectured materials under finite strains. Mater Des 147:134–145CrossRef Reda H, Karathanasopoulos N, Elnady K, Ganghoffer JF, Lakiss H (2018) The role of anisotropy on the static and wave propagation characteristics of two-dimensional architectured materials under finite strains. Mater Des 147:134–145CrossRef
17.
go back to reference Karathanasopoulos N, Reda H, Ganghoffer JF (2019) The role of non-slender inner structural designs on the linear and non-linear wave propagation attributes of periodic, two-dimensional architectured materials. J Sound Vib 455:312–323CrossRef Karathanasopoulos N, Reda H, Ganghoffer JF (2019) The role of non-slender inner structural designs on the linear and non-linear wave propagation attributes of periodic, two-dimensional architectured materials. J Sound Vib 455:312–323CrossRef
18.
go back to reference Qian D, Shi Z, Ning C, Wang J (2019) Nonlinear bandgap properties in a nonlocal piezoelectric phononic crystal nanobeam. Phys Lett A 383(25):3101–3107CrossRef Qian D, Shi Z, Ning C, Wang J (2019) Nonlinear bandgap properties in a nonlocal piezoelectric phononic crystal nanobeam. Phys Lett A 383(25):3101–3107CrossRef
19.
go back to reference Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V (2004) Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl Phys Lett 84(22):4400–4402CrossRef Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V (2004) Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl Phys Lett 84(22):4400–4402CrossRef
20.
go back to reference Moradi P, Bahrami A (2018) Design of an optomechanical filter based on solid/solid phoxonic crystals. J Appl Phys 123(11):115113CrossRef Moradi P, Bahrami A (2018) Design of an optomechanical filter based on solid/solid phoxonic crystals. J Appl Phys 123(11):115113CrossRef
21.
go back to reference Alinejad-Naini M, Bahrami A (2019) Thermal switching of ultrasonic waves in two-dimensional solid/fluid phononic crystals. Phys Scr 94(12):125705CrossRef Alinejad-Naini M, Bahrami A (2019) Thermal switching of ultrasonic waves in two-dimensional solid/fluid phononic crystals. Phys Scr 94(12):125705CrossRef
22.
go back to reference Pennec Y, Djafari-Rouhani B, Vasseur JO, Khelif A, Deymier PA (2004) Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Phys Rev E 69(4):046608CrossRef Pennec Y, Djafari-Rouhani B, Vasseur JO, Khelif A, Deymier PA (2004) Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Phys Rev E 69(4):046608CrossRef
23.
go back to reference Moradi P, Bahrami A (2019) Three channel GHz-ranged demultiplexer in solid-solid phononic crystals. Chin J Phys 59:291–297CrossRef Moradi P, Bahrami A (2019) Three channel GHz-ranged demultiplexer in solid-solid phononic crystals. Chin J Phys 59:291–297CrossRef
24.
go back to reference Motaei F, Bahrami A (2020) Eight-channel acoustic demultiplexer based on solid-fluid phononic crystals with hollow cylinders. Photonics Nanostruct Fundam Appl 39:100765CrossRef Motaei F, Bahrami A (2020) Eight-channel acoustic demultiplexer based on solid-fluid phononic crystals with hollow cylinders. Photonics Nanostruct Fundam Appl 39:100765CrossRef
25.
go back to reference Gharibi H, Khaligh A, Bahrami A, Ghavifekr HB (2019) A very high sensitive interferometric phononic crystal liquid sensor. J Mol Liq 296:111878CrossRef Gharibi H, Khaligh A, Bahrami A, Ghavifekr HB (2019) A very high sensitive interferometric phononic crystal liquid sensor. J Mol Liq 296:111878CrossRef
26.
go back to reference Ahmadi H, Rostami A (2019) Phononic wave hard limiter. J Sound Vib 443:230–237CrossRef Ahmadi H, Rostami A (2019) Phononic wave hard limiter. J Sound Vib 443:230–237CrossRef
27.
go back to reference Rose JL (2014) Ultrasonic guided waves in solid media. Cambridge University Press, CambridgeCrossRef Rose JL (2014) Ultrasonic guided waves in solid media. Cambridge University Press, CambridgeCrossRef
28.
go back to reference Abdel-Wahab AA, Ataya S, Silberschmidt VV (2017) Temperature-dependent mechanical behaviour of PMMA: experimental analysis and modelling. Polym Test 58:86–95CrossRef Abdel-Wahab AA, Ataya S, Silberschmidt VV (2017) Temperature-dependent mechanical behaviour of PMMA: experimental analysis and modelling. Polym Test 58:86–95CrossRef
29.
go back to reference Bahrami A, Mohammadnejad S, Rostami A (2011) All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter. Fiber Integrated Opt 30(3):139–150CrossRef Bahrami A, Mohammadnejad S, Rostami A (2011) All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter. Fiber Integrated Opt 30(3):139–150CrossRef
Metadata
Title
Nonlinear elastic switch based on solid–solid phononic crystals
Authors
Farzaneh Motaei
Ali Bahrami
Publication date
27-04-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04705-4

Other articles of this Issue 21/2020

Journal of Materials Science 21/2020 Go to the issue

Premium Partners