Skip to main content
Top
Published in: Neural Processing Letters 4/2022

10-03-2021

Nonlinear Graph Learning-Convolutional Networks for Node Classification

Authors: Linjun Chen, Xingyi Liu, Zexin Li

Published in: Neural Processing Letters | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graph Convolutional Networks have been widely used for node classification. Since the original data usually contains nonlinear relationships that are difficult to capture and includes noise that leads to the poor performance of the constructed graph representation, the paper proposes a novel Nonlinear Graph Learning-Convolutional Network (NGLCN) based on the kernel method and graph representation learning. Specifically, NGLCN first uses a kernel method to map the original data into kernel space, making the original linearly separable to capture the nonlinear relationship between the data, and then uses a feature selection based on structure information to remove the noisy and redundant feature and constructs a high-quality graph representation, and finally employs a common graph convolutional network to conduct node classification tasks. Experimental results on eight benchmark datasets show that NGLCN outperforms the state-of-the-art traditional graph convolutional networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80CrossRef Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80CrossRef
2.
go back to reference Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24MathSciNetCrossRef Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24MathSciNetCrossRef
3.
go back to reference Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 151:78–94CrossRef Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 151:78–94CrossRef
4.
go back to reference Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
5.
go back to reference Bruna J, Zaremba W, Szlam A, LeCun Y (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv: 1312.6203, 2013 Bruna J, Zaremba W, Szlam A, LeCun Y (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:​ 1312.​6203, 2013
6.
go back to reference Defferrard M, Bresson X, Vandergheynst P (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in neural information processing systems, pages 3844–3852, 2016 Defferrard M, Bresson X, Vandergheynst P (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in neural information processing systems, pages 3844–3852, 2016
7.
go back to reference Hamilton WL, Ying R , Leskovec J (2017). Inductive representation learning on large graphs. CoRR, abs/1706.02216, Hamilton WL, Ying R , Leskovec J (2017). Inductive representation learning on large graphs. CoRR, abs/1706.02216,
8.
go back to reference Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018). Graph Attention Networks. International Conference on Learning Representations, 2018. accepted as poster Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018). Graph Attention Networks. International Conference on Learning Representations, 2018. accepted as poster
9.
go back to reference Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2018). Graph neural networks: A review of methods and applications. arXiv preprint arXiv: 1812.08434, 2018 Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2018). Graph neural networks: A review of methods and applications. arXiv preprint arXiv:​ 1812.​08434, 2018
10.
go back to reference Li Q, Han Z, Wu XM (2018). Deeper insights into graph convolutional networks for semi-supervised learning. arXiv preprint arXiv: 1801.07606, 2018 Li Q, Han Z, Wu XM (2018). Deeper insights into graph convolutional networks for semi-supervised learning. arXiv preprint arXiv:​ 1801.​07606, 2018
11.
go back to reference Hu F, Zhu Y, Wu S, Wang L, Tan T (2019). Hierarchical graph convolutional networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667, 2019 Hu F, Zhu Y, Wu S, Wang L, Tan T (2019). Hierarchical graph convolutional networks for semi-supervised node classification. arXiv preprint arXiv:​1902.​06667, 2019
12.
go back to reference Liu Z, Lai Z, Ou W, Zhang K, Zheng R (2020) Structured optimal graph based sparse feature extraction for semi-supervised learning. Signal Process 170:107456CrossRef Liu Z, Lai Z, Ou W, Zhang K, Zheng R (2020) Structured optimal graph based sparse feature extraction for semi-supervised learning. Signal Process 170:107456CrossRef
13.
go back to reference Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synth lect artifi intell mach learn 3(1):1–130MATH Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synth lect artifi intell mach learn 3(1):1–130MATH
14.
go back to reference Bhagat S, Cormode G , Muthukrishnan S, (2011). Node classification in social networks. In Social network data analytics, 115–148. Springer, Bhagat S, Cormode G , Muthukrishnan S, (2011). Node classification in social networks. In Social network data analytics, 115–148. Springer,
15.
go back to reference Farouk Abdel Hady Mohamed, Schwenker Friedhelm (2013) Semi-supervised learning. J Royal Statistical Soc. 49(2):215–239 Farouk Abdel Hady Mohamed, Schwenker Friedhelm (2013) Semi-supervised learning. J Royal Statistical Soc. 49(2):215–239
16.
18.
go back to reference Hu R, Zhu X, Zhu Y, Gan J (2020) Robust svm with adaptive graph learning. World Wide Web 23:1945–1968CrossRef Hu R, Zhu X, Zhu Y, Gan J (2020) Robust svm with adaptive graph learning. World Wide Web 23:1945–1968CrossRef
20.
go back to reference Zhou Y, Tian L, Zhu C, Jin X, Sun Y (2020) Video coding optimization for virtual reality 360-degree source. J. Sel. Top Signal Process 14(1):118–129CrossRef Zhou Y, Tian L, Zhu C, Jin X, Sun Y (2020) Video coding optimization for virtual reality 360-degree source. J. Sel. Top Signal Process 14(1):118–129CrossRef
21.
go back to reference Depiero F, Trivedi M, Serbin S (1996) Graph matching using a direct classification of node attendance. Pattern Recognit 29(6):1031–1048CrossRef Depiero F, Trivedi M, Serbin S (1996) Graph matching using a direct classification of node attendance. Pattern Recognit 29(6):1031–1048CrossRef
23.
go back to reference Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137CrossRef Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137CrossRef
24.
go back to reference Zhu X, Song B, Shi F, Chen Y, Hu R, Gan J, Zhang W, Li M, Wang L, Gao Y, Shan F, Shen D (2021) Joint prediction and time estimation of covid-19 developing severe symptoms using chest ct scan. Med Image Anal 67:101824CrossRef Zhu X, Song B, Shi F, Chen Y, Hu R, Gan J, Zhang W, Li M, Wang L, Gao Y, Shan F, Shen D (2021) Joint prediction and time estimation of covid-19 developing severe symptoms using chest ct scan. Med Image Anal 67:101824CrossRef
25.
go back to reference Bai L, Cui L, Wang Y , Yu PS, Hancock ER (2019). Fused lasso for feature selection using structural information. arXiv preprint arXiv:1902.09947 Bai L, Cui L, Wang Y , Yu PS, Hancock ER (2019). Fused lasso for feature selection using structural information. arXiv preprint arXiv:​1902.​09947
26.
go back to reference Nie F, Wei Z, Li X (2016). Unsupervised feature selection with structured graph optimization, In Thirtieth AAAI conference on artificial intelligence Nie F, Wei Z, Li X (2016). Unsupervised feature selection with structured graph optimization, In Thirtieth AAAI conference on artificial intelligence
27.
go back to reference Jiang B, Zhang Z, Lin D, Tang J, Luo B (2020). Semi-supervised learning with graph learning-convolutional networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020 Jiang B, Zhang Z, Lin D, Tang J, Luo B (2020). Semi-supervised learning with graph learning-convolutional networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020
28.
go back to reference Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637CrossRef Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637CrossRef
29.
go back to reference He X, Cai X, Liu H, Ma WY, (2004). Locality preserving indexing for document representation. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages 96–103 He X, Cai X, Liu H, Ma WY, (2004). Locality preserving indexing for document representation. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages 96–103
30.
go back to reference Aref J (2015) Spectral graph theory. Spectr Theory Appl Linear Oper Block Oper Matrices 1:413–439 Aref J (2015) Spectral graph theory. Spectr Theory Appl Linear Oper Block Oper Matrices 1:413–439
31.
go back to reference Zhu X, Gan J, Lu G, Li J, Zhang S (2020) Spectral clustering via half-quadratic optimization. World Wide Web 23:1969–1988CrossRef Zhu X, Gan J, Lu G, Li J, Zhang S (2020) Spectral clustering via half-quadratic optimization. World Wide Web 23:1969–1988CrossRef
32.
go back to reference Chen L, Lu G, Li Y, Li J, Tan M (2020) Local structure preservation for nonlinear clustering. Neural Process Lett 52:1811–1826CrossRef Chen L, Lu G, Li Y, Li J, Tan M (2020) Local structure preservation for nonlinear clustering. Neural Process Lett 52:1811–1826CrossRef
Metadata
Title
Nonlinear Graph Learning-Convolutional Networks for Node Classification
Authors
Linjun Chen
Xingyi Liu
Zexin Li
Publication date
10-03-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 4/2022
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10478-x

Other articles of this Issue 4/2022

Neural Processing Letters 4/2022 Go to the issue