Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Nonlinear Modeling Application to Micro-/Nanorobotics

Authors : Ali Ghanbari, Mohsen Bahrami

Published in: Nonlinear Approaches in Engineering Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Micro-/nanorobots have the potential to revolutionize medicine by specific applications, such as targeted drug delivery, biopsy, hyperthermia, brachytherapy, scaffolding, in vivo ablation, sensing, marking, and stem cell therapy. Application of microrobots can move us to the stage that monitoring diseases, precise localized drug delivery, minimally invasive surgery, and novel therapies such as stem cell therapy are done using the tools inside the human body.
Since size is small and velocity is low, microrobots have a very low Reynolds (Re) number. A low Re number indicates the dominance of viscous forces and hence, swimming methodologies at microscale are different from those at the macroscale. Although motion of these microrobots is linear at Stokes flow, hydrodynamics of flagella and cilia involve nonlinear models that should be addressed for precise actuation and control of micro-/nanorobots. Nonlinear modeling is of great significance especially when the artificial filaments are fabricated from soft materials to mimic natural flagella and cilia and provide enhanced propulsion.
A great challenge in developing an autonomous microrobotic system is to provide power and control for the microrobot. Since untethered microrobots can be used as implants and have a higher maneuverability, the control system should benefit from a wireless actuation mechanism. Magnetic actuation can transfer a reasonable amount of power wirelessly. There are different systems for generating magnetic field and gradients:
• Permanent magnets
• Helmholtz coils, Maxwell coils, or a combination thereof
• Magnetic resonance imaging (MRI) systems
• Customized sets of electromagnetic coils

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12, 55–85.CrossRef Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12, 55–85.CrossRef
2.
go back to reference Sitti, M., Giltinan, J., & Yim, S. (2015). Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, 103, 205–224.CrossRef Sitti, M., Giltinan, J., & Yim, S. (2015). Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, 103, 205–224.CrossRef
3.
go back to reference Ceylan, H., Giltinan, J., Kozielskia, K., & Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab on a Chip, 17, 1705–1724.CrossRef Ceylan, H., Giltinan, J., Kozielskia, K., & Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab on a Chip, 17, 1705–1724.CrossRef
4.
go back to reference Chen, X. Z., Hoop, M., Mushtaq, F., Siringil, E., Hu, C., Nelson, B. J., & Pané, S. (2017). Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today, 9, 37–48.CrossRef Chen, X. Z., Hoop, M., Mushtaq, F., Siringil, E., Hu, C., Nelson, B. J., & Pané, S. (2017). Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today, 9, 37–48.CrossRef
5.
go back to reference Ghanbari, A., Bahrami, M., & Nobari, M. R. H. (2011). Methodology for artificial microswimming using magnetic actuation. Physical Review E, 83, 046301.CrossRef Ghanbari, A., Bahrami, M., & Nobari, M. R. H. (2011). Methodology for artificial microswimming using magnetic actuation. Physical Review E, 83, 046301.CrossRef
6.
go back to reference Ghanbari, A., & Bahrami, M. (2011). A novel swimming microrobot based on artificial cilia for biomedical applications. Journal of Intelligent and Robotic Systems, 63, 399–416.CrossRef Ghanbari, A., & Bahrami, M. (2011). A novel swimming microrobot based on artificial cilia for biomedical applications. Journal of Intelligent and Robotic Systems, 63, 399–416.CrossRef
7.
go back to reference Zhang, L., Abbott, J. J., Dong, L., Kratochvil, B. E., Bell, D., & Nelson, B. J. (2009). Artificial bacterial flagella: fabrication and magnetic control. Applied Physics Letters, 94, 064107.CrossRef Zhang, L., Abbott, J. J., Dong, L., Kratochvil, B. E., Bell, D., & Nelson, B. J. (2009). Artificial bacterial flagella: fabrication and magnetic control. Applied Physics Letters, 94, 064107.CrossRef
8.
go back to reference Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K., & Nelson, B. J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 1434–1447.CrossRef Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K., & Nelson, B. J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 1434–1447.CrossRef
9.
go back to reference Huang, H., Chao, Q., Sakar, M. S., & Nelson, B. J. (2017). Optimization of tail geometry for the propulsion of soft microrobots. IEEE Robotics and Automation Letters, 2, 727–732.CrossRef Huang, H., Chao, Q., Sakar, M. S., & Nelson, B. J. (2017). Optimization of tail geometry for the propulsion of soft microrobots. IEEE Robotics and Automation Letters, 2, 727–732.CrossRef
10.
go back to reference Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., & Pouponneau, P. (2009). Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. International Journal of Robotics Research, 28, 571–582.CrossRef Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., & Pouponneau, P. (2009). Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. International Journal of Robotics Research, 28, 571–582.CrossRef
11.
go back to reference Martel, S., Felfoul, O., Mathieu, J., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz, M., & Tabatabaei, N. (2009). MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. International Journal of Robotics Research, 28, 1169–1182.CrossRef Martel, S., Felfoul, O., Mathieu, J., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz, M., & Tabatabaei, N. (2009). MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. International Journal of Robotics Research, 28, 1169–1182.CrossRef
12.
go back to reference Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). Octomag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26, 1006–1017.CrossRef Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). Octomag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26, 1006–1017.CrossRef
13.
go back to reference Schuerle, S., Erni, S., Flink, M., Kratochvil, B. E., & Nelson, B. J. (2013). Three-dimensional magnetic manipulation of micro-and nanostructures for applications in life sciences. IEEE Transactions on Magnetics, 49, 321–330.CrossRef Schuerle, S., Erni, S., Flink, M., Kratochvil, B. E., & Nelson, B. J. (2013). Three-dimensional magnetic manipulation of micro-and nanostructures for applications in life sciences. IEEE Transactions on Magnetics, 49, 321–330.CrossRef
14.
go back to reference Zhang, Z., & Menq, C. H. (2011). Design and modeling of a 3-D magnetic actuator for magnetic microbead manipulation. IEEE/ASME Transactions on Mechatronics, 16, 421–430.CrossRef Zhang, Z., & Menq, C. H. (2011). Design and modeling of a 3-D magnetic actuator for magnetic microbead manipulation. IEEE/ASME Transactions on Mechatronics, 16, 421–430.CrossRef
15.
go back to reference Grady, M. S., Howard, M. A., III, Molloy, J. A., Ritter, R. C., Quate, E. G., & Gillies, G. T. (1990). Nonlinear magnetic stereotaxis: three dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Medical Physics, 17, 405–415.CrossRef Grady, M. S., Howard, M. A., III, Molloy, J. A., Ritter, R. C., Quate, E. G., & Gillies, G. T. (1990). Nonlinear magnetic stereotaxis: three dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Medical Physics, 17, 405–415.CrossRef
16.
go back to reference Taylor, G. I. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, A209, 447–461.MathSciNetMATH Taylor, G. I. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, A209, 447–461.MathSciNetMATH
17.
go back to reference Gray, J., & Hancock, G. (1955). The propulsion of sea-urchin spermatozoa. Journal of Experimental Biology, 32, 802–814. Gray, J., & Hancock, G. (1955). The propulsion of sea-urchin spermatozoa. Journal of Experimental Biology, 32, 802–814.
18.
go back to reference Brokaw, C. J. (1970). Bending moments in free-swimming flagella. Journal of Experimental Biology, 53, 445–464. Brokaw, C. J. (1970). Bending moments in free-swimming flagella. Journal of Experimental Biology, 53, 445–464.
19.
go back to reference Gueron, S., & Liron, N. (1992). Ciliary motion modeling, and dynamic multicilia interactions. Biophysical Journal, 63, 1045–1058.CrossRef Gueron, S., & Liron, N. (1992). Ciliary motion modeling, and dynamic multicilia interactions. Biophysical Journal, 63, 1045–1058.CrossRef
20.
go back to reference Childress, S. (1981). Mechanics of swimming and flying. New York: Cambridge University Press.CrossRef Childress, S. (1981). Mechanics of swimming and flying. New York: Cambridge University Press.CrossRef
21.
go back to reference Lighthill, J. L. (1975) Mathematical biofluiddynamics. In Regional Conference Series in Applied Mathematics, SIAM (pp. 45–62). Lighthill, J. L. (1975) Mathematical biofluiddynamics. In Regional Conference Series in Applied Mathematics, SIAM (pp. 45–62).
22.
go back to reference Johnson, R. E., & Brokaw, C. J. (1979). Flagellar hydrodynamics: a comparison between resistive-force theory and slender-body theory. Biophysical Journal, 25, 113–127.CrossRef Johnson, R. E., & Brokaw, C. J. (1979). Flagellar hydrodynamics: a comparison between resistive-force theory and slender-body theory. Biophysical Journal, 25, 113–127.CrossRef
23.
go back to reference Gueron, S., & Levit-Gurevich, K. (1998). Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and ciliainteractions. Biophysical Journal, 74, 1658–1676.CrossRef Gueron, S., & Levit-Gurevich, K. (1998). Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and ciliainteractions. Biophysical Journal, 74, 1658–1676.CrossRef
24.
go back to reference Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.CrossRef Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.CrossRef
25.
go back to reference Feng, J., Joseph, D. D., Glowinski, R., & Pan, T. W. (1995). A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. Journal of Fluid Mechanics, 283, 1–16.MathSciNetCrossRef Feng, J., Joseph, D. D., Glowinski, R., & Pan, T. W. (1995). A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. Journal of Fluid Mechanics, 283, 1–16.MathSciNetCrossRef
26.
go back to reference Kim, S., Lee, S., Lee, J., Nelson, B. J., Zhang, L., & Choi, H. (2016). Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Scientific Reports, 6, 30713.CrossRef Kim, S., Lee, S., Lee, J., Nelson, B. J., Zhang, L., & Choi, H. (2016). Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Scientific Reports, 6, 30713.CrossRef
27.
go back to reference Gibbons, I. R. (1981). Cilia and flagella of eukaryotes. Journal of Cell Biology, 91, 107s–124s.CrossRef Gibbons, I. R. (1981). Cilia and flagella of eukaryotes. Journal of Cell Biology, 91, 107s–124s.CrossRef
28.
go back to reference Sleigh, M. A. (1962). The biology of cilia and flagella. Oxford: Pergamon Press. Sleigh, M. A. (1962). The biology of cilia and flagella. Oxford: Pergamon Press.
29.
go back to reference Sleigh, M. A. (1968) Patterns of ciliary beating. In Aspects of cell motility (22nd Symposium of the Society for Experimental Biology) (pp. 131–150). Sleigh, M. A. (1968) Patterns of ciliary beating. In Aspects of cell motility (22nd Symposium of the Society for Experimental Biology) (pp. 131–150).
30.
go back to reference Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5, 1259–1272.CrossRef Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5, 1259–1272.CrossRef
31.
go back to reference Kim, S., Qiu, F., Kim, S., Ghanbari, A., Moon, C., Zhang, L., Nelson, B. J., & Choi, H. (2013). Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Advanced Materials, 25, 5863–5868.CrossRef Kim, S., Qiu, F., Kim, S., Ghanbari, A., Moon, C., Zhang, L., Nelson, B. J., & Choi, H. (2013). Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Advanced Materials, 25, 5863–5868.CrossRef
32.
go back to reference Ghanbari, A., Chang, P. H., Nelson, B. J., & Choi, H. (2014). Electromagnetic steering of a magnetic cylindrical microrobot using optical feedback closed-loop control. International Journal of Optomechatronics, 8, 129–145.CrossRef Ghanbari, A., Chang, P. H., Nelson, B. J., & Choi, H. (2014). Electromagnetic steering of a magnetic cylindrical microrobot using optical feedback closed-loop control. International Journal of Optomechatronics, 8, 129–145.CrossRef
33.
go back to reference Evans, B. A., Shields, A. R., Lloyd Carroll, R., Washburn, S., Falvo, M. R., & Superfine, R. (2007). Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters, 7, 1428–1434.CrossRef Evans, B. A., Shields, A. R., Lloyd Carroll, R., Washburn, S., Falvo, M. R., & Superfine, R. (2007). Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters, 7, 1428–1434.CrossRef
34.
go back to reference Goubault, C. (2003). Flexible magnetic filaments as micromechanical sensors. Physical Review Letters, 91, 260802.CrossRef Goubault, C. (2003). Flexible magnetic filaments as micromechanical sensors. Physical Review Letters, 91, 260802.CrossRef
35.
go back to reference Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J., & Stone, H. A. (2006). On the dynamics of magnetically driven elastic filaments. Journal of Fluid Mechanics, 554, 167–190.MathSciNetCrossRef Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J., & Stone, H. A. (2006). On the dynamics of magnetically driven elastic filaments. Journal of Fluid Mechanics, 554, 167–190.MathSciNetCrossRef
36.
go back to reference Ghanbari, A., Chang, P. H., Nelson, B. J., & Choi, H. (2014). Magnetic actuation of a cylindrical microrobot using time-delay-estimation closed-loop control: modeling and experiments. Smart Materials and Structures, 23, 035013.CrossRef Ghanbari, A., Chang, P. H., Nelson, B. J., & Choi, H. (2014). Magnetic actuation of a cylindrical microrobot using time-delay-estimation closed-loop control: modeling and experiments. Smart Materials and Structures, 23, 035013.CrossRef
Metadata
Title
Nonlinear Modeling Application to Micro-/Nanorobotics
Authors
Ali Ghanbari
Mohsen Bahrami
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-18963-1_4

Premium Partner