Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

5. Nonlinear Models of Microstructured Media

Authors : Vladimir I. Erofeev, Igor S. Pavlov

Published in: Structural Modeling of Metamaterials

Publisher: Springer International Publishing

Abstract

In Chaps. 24, the linear models of microstructured media have been considered, the particles of which have three degrees of freedom. In this chapter, the dynamic equations of a rectangular lattice of ellipse-shaped particles and a square lattice of round particles are generalized to the nonlinear case.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing. New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003) Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing. New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003)
2.
go back to reference Lurie A.I.: Non-Linear Theory of Elasticity, 0. 617. Elsevier (2012) Lurie A.I.: Non-Linear Theory of Elasticity, 0. 617. Elsevier (2012)
3.
go back to reference Pavlov, I.S.: On estimation of the nonlinearity coefficients of a granular medium by the structural modeling method. Vestnik Nizhegorodskogo Universiteta (Nizhny Novgorod State University Proceedings) 6, 143–152 (2012). (in Russian) Pavlov, I.S.: On estimation of the nonlinearity coefficients of a granular medium by the structural modeling method. Vestnik Nizhegorodskogo Universiteta (Nizhny Novgorod State University Proceedings) 6, 143–152 (2012). (in Russian)
4.
go back to reference Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999) Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999)
5.
go back to reference Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006) CrossRef Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006) CrossRef
6.
go back to reference Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State. 39, 118–124 (1997) Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State. 39, 118–124 (1997)
7.
go back to reference Potapov, A.I., Pavlov, I.S.: Nonlinear waves in 1D oriented media. Acoust. Lett. 19(6), 110–115 (1996) Potapov, A.I., Pavlov, I.S.: Nonlinear waves in 1D oriented media. Acoust. Lett. 19(6), 110–115 (1996)
8.
go back to reference Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010) CrossRef Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010) CrossRef
9.
go back to reference Dyachkov, P.N.: Carbon nanotubes. Structure, properties, applications. Publishing House Binom. Laboratory of Knowledge, Moscow (2006) 296 p. (in Russian) Dyachkov, P.N.: Carbon nanotubes. Structure, properties, applications. Publishing House Binom. Laboratory of Knowledge, Moscow (2006) 296 p. (in Russian)
10.
go back to reference Eletskii, A.V.: Mechanical properties of carbon nanostructures and related materials. Phys. Uspekhi 50(3), 225–261 (2007) Eletskii, A.V.: Mechanical properties of carbon nanostructures and related materials. Phys. Uspekhi 50(3), 225–261 (2007)
11.
go back to reference Li, Chunyu, Chou, Tsu-Wei: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003) CrossRef Li, Chunyu, Chou, Tsu-Wei: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003) CrossRef
12.
go back to reference Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005) Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005)
13.
go back to reference Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Localization of bending vibrations in the single-wall carbon nanotubes. Nanosyst. Phys. Chem. Math. 2(2), 102–106 (2011) Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Localization of bending vibrations in the single-wall carbon nanotubes. Nanosyst. Phys. Chem. Math. 2(2), 102–106 (2011)
14.
go back to reference Miloserdova, I.V., Pavlov, I.S.: The mathematical model of nonlinear oscillations of a layer of nanotubes. In: Proceedings of the First Russian Conference “Problems of Mechanics and Acoustics of Media with Micro- and Nanostructure: NANOMECH-2009”, pp. 175–183. Nizhny Novgorod, Russia (2009) (in Russian) Miloserdova, I.V., Pavlov, I.S.: The mathematical model of nonlinear oscillations of a layer of nanotubes. In: Proceedings of the First Russian Conference “Problems of Mechanics and Acoustics of Media with Micro- and Nanostructure: NANOMECH-2009”, pp. 175–183. Nizhny Novgorod, Russia (2009) (in Russian)
15.
go back to reference Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady Phys. 53(7), 408–412 (2008) CrossRef Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Doklady Phys. 53(7), 408–412 (2008) CrossRef
16.
go back to reference Fedorov, V.I.: Theory of Elastic Waves in Crystals. Plenum Press, New York, Nauka, Moscow, 1965, 1968 Fedorov, V.I.: Theory of Elastic Waves in Crystals. Plenum Press, New York, Nauka, Moscow, 1965, 1968
17.
go back to reference Kittel, C.: Introduction to Solid State Physics, 8th edn. John Wiley and Sons, Inc. (2005) Kittel, C.: Introduction to Solid State Physics, 8th edn. John Wiley and Sons, Inc. (2005)
18.
go back to reference Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000) Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000)
19.
go back to reference Tucker, J.W., Rampton, V.W.: Microwave Ultrasonics in Solid State Physics. North-Holland Publ. Comp, Amsterdam (1972) Tucker, J.W., Rampton, V.W.: Microwave Ultrasonics in Solid State Physics. North-Holland Publ. Comp, Amsterdam (1972)
Metadata
Title
Nonlinear Models of Microstructured Media
Authors
Vladimir I. Erofeev
Igor S. Pavlov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60330-4_5

Premium Partners