Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2018

01-08-2017

Nonlinear motion of an oscillating bubble immersed in a magnetic fluid

Authors: S. Malvar, R. G. Gontijo, F. R. Cunha

Published in: Journal of Engineering Mathematics | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The motion of a spherical bubble in a ferrofluid subjected to an acoustic pressure field and a magnetic field is examined. The continuous fluid here is a colloidal suspension composed of ferromagnetic particles dispersed in a Newtonian carrier liquid. The constitutive equation for the fluid is based on the standard Maxwell tensor for a symmetric or nonmemory magnetic fluid with uniform permeability. In this case, a new version of the Rayleigh–Plesset equation is formulated considering the magnetic stress contribution of the bubble dynamics. The numerical computation solves a system of ordinary differential equations using a fifth-order Runge–Kutta scheme with adaptive time step. An asymptotic solution of the governing equation is also developed for small values of the nondimensional pressure forcing amplitude and for small values of the magnetic parameter. This theoretical solution is used in order to validate the numerical scheme. A theoretical study of the bubble collapse radius is also presented. The results suggest a strong anisotropic effect on the radial oscillation of the bubble as the magnetic and the hydrodynamic time scales are coupled in the examined dynamics. The bubble oscillatory motion can be controlled and its collapse avoided when a high magnetic field is applied. In this case, the magnetic contribution can control the bubble motion preventing or causing collapse, depending on the magnetic physical parameters: the uniform susceptibility and the magnetic Reynolds number. When the frequency of the acoustic field leads to decoupled time scales, the application of a magnetic field can produce a different scenario of the bubble dynamics. A hydrodynamic linear stability analysis is also presented in order to examine how the bubble motion evolves in time under conditions of different setting of nondimensional parameters, resulting in stable or unstable oscillating modes. The bubble response to an oscillatory magnetic field is also explored in this work. In this regard, new patterns and modes of vibration are identified, including chaotic patterns.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Eller AI (1975) Effects of diffusion on gaseous cavitation bubbles. J Acoust Soc Am 57(6):1374–1378ADSCrossRef Eller AI (1975) Effects of diffusion on gaseous cavitation bubbles. J Acoust Soc Am 57(6):1374–1378ADSCrossRef
2.
go back to reference Wylie EB (1984) Simulation of vaporous and gaseous cavitation. J Fluids Eng 106(3):307–311CrossRef Wylie EB (1984) Simulation of vaporous and gaseous cavitation. J Fluids Eng 106(3):307–311CrossRef
3.
go back to reference Marmottant P, Hilgenfeldt S (2004) A bubble-driven microfluidic transport element for bioengineering. J Am Chem Soc 101(26):9523–9527 Marmottant P, Hilgenfeldt S (2004) A bubble-driven microfluidic transport element for bioengineering. J Am Chem Soc 101(26):9523–9527
4.
go back to reference Zahn M (2011) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanopart Res 3(1):73–78CrossRef Zahn M (2011) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanopart Res 3(1):73–78CrossRef
5.
6.
go back to reference Chen H, Brayman AA, Bailey MR, Matula TJ (2000) Blood vessel rupture by cavitation. Urol Res 38(4):321–326CrossRef Chen H, Brayman AA, Bailey MR, Matula TJ (2000) Blood vessel rupture by cavitation. Urol Res 38(4):321–326CrossRef
7.
go back to reference Papadopoulou V, Tang M, Balestra C, Eckersley RJ, Karapantsios TD (2014) Circulatory bubble dynamics: from physical to biological aspects. Adv Colloid Interface Sci 206:239–249CrossRef Papadopoulou V, Tang M, Balestra C, Eckersley RJ, Karapantsios TD (2014) Circulatory bubble dynamics: from physical to biological aspects. Adv Colloid Interface Sci 206:239–249CrossRef
8.
go back to reference Blake JR, Gibson DC (1987) Cavitation bubbles near boundarie. Annu Rev Fluid Mech 19:99–123ADSCrossRef Blake JR, Gibson DC (1987) Cavitation bubbles near boundarie. Annu Rev Fluid Mech 19:99–123ADSCrossRef
9.
go back to reference Naudé CF, Ellis AT (1961) On the mechanism of cavitation damage by non-hemispherical cavities. Trans ASME D Basic Eng 83:648–656CrossRef Naudé CF, Ellis AT (1961) On the mechanism of cavitation damage by non-hemispherical cavities. Trans ASME D Basic Eng 83:648–656CrossRef
10.
go back to reference Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J Fluid Mech 47(2):283–290ADSCrossRef Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J Fluid Mech 47(2):283–290ADSCrossRef
11.
go back to reference Cheng HY, Chu MC, Leung PT, Yuan L (1998) How important are shock waves to single-bubble sonoluminescence? Phys Rev E 58(3):R2705ADSCrossRef Cheng HY, Chu MC, Leung PT, Yuan L (1998) How important are shock waves to single-bubble sonoluminescence? Phys Rev E 58(3):R2705ADSCrossRef
12.
go back to reference Johsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124(4):2011–2020ADSCrossRef Johsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124(4):2011–2020ADSCrossRef
13.
go back to reference Albernaz DL (2001) Dinâmica de bolhas em líquidos elásticos e anisotrópicos. Master Dissertation, University of Brasília Albernaz DL (2001) Dinâmica de bolhas em líquidos elásticos e anisotrópicos. Master Dissertation, University of Brasília
14.
go back to reference Odenbach S (2009) Colloidal magnetic fluids: basics, development and application of ferrofluids. Lecture notes in physics, vol 763, Springer, Berlin Odenbach S (2009) Colloidal magnetic fluids: basics, development and application of ferrofluids. Lecture notes in physics, vol 763, Springer, Berlin
15.
go back to reference Cunha FR, Sousa AJ, Morais PC (2002) The dynamic behavior of a collapsing bubble in a magnetic fluid. J Magn Magn Mater 252:271–275ADSCrossRef Cunha FR, Sousa AJ, Morais PC (2002) The dynamic behavior of a collapsing bubble in a magnetic fluid. J Magn Magn Mater 252:271–275ADSCrossRef
16.
go back to reference Rosensweig RE (2001) Encyclopedia of Materials: Science and Technology (Second Edition). Elsevier, pp. 3093–3102 Rosensweig RE (2001) Encyclopedia of Materials: Science and Technology (Second Edition). Elsevier, pp. 3093–3102
17.
go back to reference Rosensweig RE (1985) Ferrohydrodynamics. Dover, New York Rosensweig RE (1985) Ferrohydrodynamics. Dover, New York
18.
go back to reference Malvar S (2014) Bubble dynamics in magnetic fluids: theory and applications. Master Dissertation, University of Brasília Malvar S (2014) Bubble dynamics in magnetic fluids: theory and applications. Master Dissertation, University of Brasília
19.
go back to reference Gontijo RG (2013) Micromechanics and microhydrodynamics of magnetic suspensions. PhD Thesis, University of Brasília Gontijo RG (2013) Micromechanics and microhydrodynamics of magnetic suspensions. PhD Thesis, University of Brasília
20.
go back to reference Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targering. J Biomech 35(6):813–821CrossRef Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targering. J Biomech 35(6):813–821CrossRef
21.
go back to reference Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targering. J Surg Res 95(2):200–206CrossRef Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targering. J Surg Res 95(2):200–206CrossRef
22.
go back to reference Kang KH, Kang IS, Lee CM (2002) Effects of a uniform magnetic field on a growing or collapsing bubble in a weakly viscous conducting fluid. Phys Fluids 14(1):29–31ADSCrossRefMATH Kang KH, Kang IS, Lee CM (2002) Effects of a uniform magnetic field on a growing or collapsing bubble in a weakly viscous conducting fluid. Phys Fluids 14(1):29–31ADSCrossRefMATH
23.
go back to reference Wong CPC, Vliet GC, Schmidt PS (1978) Magnetic field effects on bubble growth in boiling liquid metals. J Heat Transf 100(3):466–472CrossRef Wong CPC, Vliet GC, Schmidt PS (1978) Magnetic field effects on bubble growth in boiling liquid metals. J Heat Transf 100(3):466–472CrossRef
24.
go back to reference He YQ, Be QC, Shi DX (2001) Dynamics of a single air bubble rising in a thin gap filled with magnetic fluids. Fluid Dyn Mater Process 7(4):357–370 He YQ, Be QC, Shi DX (2001) Dynamics of a single air bubble rising in a thin gap filled with magnetic fluids. Fluid Dyn Mater Process 7(4):357–370
25.
go back to reference Ishimoto J, Okubo M, Kamiyama S, Higashitani M (1995) Bubble behavior in magnetic fluid under a nonuniform field. JSME Int J 38(3):182 Ishimoto J, Okubo M, Kamiyama S, Higashitani M (1995) Bubble behavior in magnetic fluid under a nonuniform field. JSME Int J 38(3):182
26.
go back to reference Rinaldi C, Chaves A, Elborai S, He X, Zhan M (2005) Magnetic fluid rheology and flows. Curr Opin Colloid Interface Sci 10:141–157CrossRef Rinaldi C, Chaves A, Elborai S, He X, Zhan M (2005) Magnetic fluid rheology and flows. Curr Opin Colloid Interface Sci 10:141–157CrossRef
27.
go back to reference Cunha FR, Albernaz DL (2013) Oscillatory motion of a spherical bubble in a non-Newtonian fluid. J Non-Newton Fluid Mech 191:35–44CrossRef Cunha FR, Albernaz DL (2013) Oscillatory motion of a spherical bubble in a non-Newtonian fluid. J Non-Newton Fluid Mech 191:35–44CrossRef
28.
go back to reference Kirakosyan AS, Pokrovsky VL (2006) From bubble to Skyrmion: dynamic transformation mediated by a strong magnetic tip. J Magn Magn Mater 305(2):413–422ADSCrossRef Kirakosyan AS, Pokrovsky VL (2006) From bubble to Skyrmion: dynamic transformation mediated by a strong magnetic tip. J Magn Magn Mater 305(2):413–422ADSCrossRef
29.
go back to reference Kuwahara T, DeVuyst F, Yamaguchi H (2009) Bubble velocity measurement using magnetic fluid and electromagnetic induction. Phys Fluids 21(9):097101ADSCrossRefMATH Kuwahara T, DeVuyst F, Yamaguchi H (2009) Bubble velocity measurement using magnetic fluid and electromagnetic induction. Phys Fluids 21(9):097101ADSCrossRefMATH
30.
go back to reference Korlie MS, Mukherjee A, Nita BG, Stevens JG, Trubatch AD, Yecko P (2008) Modeling bubbles and droplets in magnetic fluids. J Phys Condens Matter 20(20):204143ADSCrossRef Korlie MS, Mukherjee A, Nita BG, Stevens JG, Trubatch AD, Yecko P (2008) Modeling bubbles and droplets in magnetic fluids. J Phys Condens Matter 20(20):204143ADSCrossRef
31.
go back to reference Lee WK, Scardovelli R (2010) Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic. Phys Rev E 82(1):016302ADSCrossRef Lee WK, Scardovelli R (2010) Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic. Phys Rev E 82(1):016302ADSCrossRef
32.
go back to reference Polunin VM, Shabanova IA, Karpova GV, Kobelev NS, Ryabstev KS, Platonov VB, Arefev IM (2015) Elastic oscillations of bubbles separated from an air cavity in a magnetic fluid. Acoust Phys 61(4):416–421ADSCrossRef Polunin VM, Shabanova IA, Karpova GV, Kobelev NS, Ryabstev KS, Platonov VB, Arefev IM (2015) Elastic oscillations of bubbles separated from an air cavity in a magnetic fluid. Acoust Phys 61(4):416–421ADSCrossRef
33.
go back to reference Soh WK, Karimi AA (1996) On the calculation of heat transfer in a pulsating bubble. Appl Math Model 20(9):638–645CrossRefMATH Soh WK, Karimi AA (1996) On the calculation of heat transfer in a pulsating bubble. Appl Math Model 20(9):638–645CrossRefMATH
34.
go back to reference Brujan EA (1999) A first-order model for bubble dynamics in a compressible viscoelastic liquid. J Non-Newton Fluid Mech 84(1):83–103CrossRefMATH Brujan EA (1999) A first-order model for bubble dynamics in a compressible viscoelastic liquid. J Non-Newton Fluid Mech 84(1):83–103CrossRefMATH
35.
go back to reference Rosensweig RE (2014) Continuum equations for magnetic and dielectric fluids with internal rotations. J Chem Phys 121(2004):1228–1242ADS Rosensweig RE (2014) Continuum equations for magnetic and dielectric fluids with internal rotations. J Chem Phys 121(2004):1228–1242ADS
36.
go back to reference Rosensweig RE (1994) On magnetorheology and electrorheology as states of unsymmetric stress. J Rheol 39(1):179–192ADSCrossRef Rosensweig RE (1994) On magnetorheology and electrorheology as states of unsymmetric stress. J Rheol 39(1):179–192ADSCrossRef
37.
go back to reference Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615ADSMathSciNetCrossRef Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615ADSMathSciNetCrossRef
38.
go back to reference Jansons KM (1983) Determination of the constitutive equations for a magnetic fluid. J. Fluid Mech. 137:187–2016ADSCrossRefMATH Jansons KM (1983) Determination of the constitutive equations for a magnetic fluid. J. Fluid Mech. 137:187–2016ADSCrossRefMATH
39.
go back to reference Cunha FR, Rosa AP, Dias NJ (2016) Rheology of a very dilute magnetic suspension with micro-structures of nanoparticles. J Magn Magn Mater 397:266274CrossRef Cunha FR, Rosa AP, Dias NJ (2016) Rheology of a very dilute magnetic suspension with micro-structures of nanoparticles. J Magn Magn Mater 397:266274CrossRef
40.
go back to reference Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570ADSCrossRefMATH Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570ADSCrossRefMATH
41.
go back to reference Cunha FR (2017) A short note on the stress tensor of a dilute magnetic suspension of spherical particles (submitted) Cunha FR (2017) A short note on the stress tensor of a dilute magnetic suspension of spherical particles (submitted)
42.
go back to reference Leal G (1992) Laminar flow and convective transport processes (scaling principles and asymptotic analysis). In: Brenner H (ed) Butterworth-Heinemann series in chemical engineering. Butterworth-Heinemann, Stoneham Leal G (1992) Laminar flow and convective transport processes (scaling principles and asymptotic analysis). In: Brenner H (ed) Butterworth-Heinemann series in chemical engineering. Butterworth-Heinemann, Stoneham
43.
go back to reference Young T (1805) An essay on the cohesion of fluids. Philos Tran R Soc Lond 95:65–87CrossRef Young T (1805) An essay on the cohesion of fluids. Philos Tran R Soc Lond 95:65–87CrossRef
44.
go back to reference Laplace PSM (1805) Trait de Mcanique Cleste, vol 4. Crapelet/Courcier/Bachelier, Paris Laplace PSM (1805) Trait de Mcanique Cleste, vol 4. Crapelet/Courcier/Bachelier, Paris
45.
go back to reference Yamani R, Tomita S, Mai J, Park MK, Oshima S (2002) Oscillation of a diamagnetic liquid bubble suspended by magnetic force. J Magn Magn Mater 252:268–270ADSCrossRef Yamani R, Tomita S, Mai J, Park MK, Oshima S (2002) Oscillation of a diamagnetic liquid bubble suspended by magnetic force. J Magn Magn Mater 252:268–270ADSCrossRef
46.
go back to reference Malvar S, Gontijo RG, Cunha FR (2014) Vibrational modes on the non-linear motion of an oscillating bubble in a Newtonian Fluid using Neural Networks. In: DINAME—17th international symposium on dynamic problems of mechanics, Natal/RN, Brazil Malvar S, Gontijo RG, Cunha FR (2014) Vibrational modes on the non-linear motion of an oscillating bubble in a Newtonian Fluid using Neural Networks. In: DINAME—17th international symposium on dynamic problems of mechanics, Natal/RN, Brazil
47.
go back to reference Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in Fortran 77. Cambridge University Press, CambridgeMATH Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in Fortran 77. Cambridge University Press, CambridgeMATH
48.
go back to reference Cash JR, Karp AH (1990) A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans Math Softw 16(3):201–222MathSciNetCrossRefMATH Cash JR, Karp AH (1990) A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans Math Softw 16(3):201–222MathSciNetCrossRefMATH
49.
go back to reference Albernaz DL, Cunha FR (2011) Bubble dynamics in a Maxwell fluid with extensional viscosity. Mech Res Commun 38(3):255CrossRefMATH Albernaz DL, Cunha FR (2011) Bubble dynamics in a Maxwell fluid with extensional viscosity. Mech Res Commun 38(3):255CrossRefMATH
50.
52.
go back to reference Yoshimura N (1989) Application of magnetic action for sterilization of food. Shokukin Kihatsu 24(3):46–48 Yoshimura N (1989) Application of magnetic action for sterilization of food. Shokukin Kihatsu 24(3):46–48
53.
go back to reference Moore RK (1979) Biological effects of magnetic fields: studies with microorganisms. Can J Microbiol 25(10):1145–1151CrossRef Moore RK (1979) Biological effects of magnetic fields: studies with microorganisms. Can J Microbiol 25(10):1145–1151CrossRef
54.
go back to reference Hund A (1942) Frequency modulation. McGraw-Hill/University of California, New York/Santa Barbara Hund A (1942) Frequency modulation. McGraw-Hill/University of California, New York/Santa Barbara
55.
go back to reference Lauterborn W, Cramer L (1991) Subharmonic route to chaos observed in acoustics. Phys Rev Lett 20(47):1445–1448 Lauterborn W, Cramer L (1991) Subharmonic route to chaos observed in acoustics. Phys Rev Lett 20(47):1445–1448
56.
go back to reference Lauterborn W, Kochi A (1991) Holographic observation of period-doubled and chaotic oscillations in acoustic cavitation. Phys Rev A 20(47):1445–1448 Lauterborn W, Kochi A (1991) Holographic observation of period-doubled and chaotic oscillations in acoustic cavitation. Phys Rev A 20(47):1445–1448
57.
go back to reference Holt RG, Gaitan DF, Atchley AA, Holzfuss J (1994) Chaotic sonoluminescence. Phys Rev Lett 72(9):1376–1379ADSCrossRef Holt RG, Gaitan DF, Atchley AA, Holzfuss J (1994) Chaotic sonoluminescence. Phys Rev Lett 72(9):1376–1379ADSCrossRef
58.
go back to reference Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. Institut fr Angewandte Physik, Technische Hochschule Darmstadt, Darmstadt Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. Institut fr Angewandte Physik, Technische Hochschule Darmstadt, Darmstadt
60.
go back to reference Galka A (2000) Topics in nonlinear time series analysis: with implications for EEG analysis. World Scientific, SingaporeCrossRefMATH Galka A (2000) Topics in nonlinear time series analysis: with implications for EEG analysis. World Scientific, SingaporeCrossRefMATH
61.
go back to reference Sinai GY (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspekhi Mat Nauk 25(2):141–192 Sinai GY (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspekhi Mat Nauk 25(2):141–192
62.
go back to reference Kang KH, Kang IS, Lee CM (1970) Effects of an uniform magnetic field on a growing or collapsing bubble in a weakly viscous conducting fluid. Phys Fluids 14(1):29–40ADSCrossRefMATH Kang KH, Kang IS, Lee CM (1970) Effects of an uniform magnetic field on a growing or collapsing bubble in a weakly viscous conducting fluid. Phys Fluids 14(1):29–40ADSCrossRefMATH
63.
go back to reference Gontijo RG, Cunha FR (2017) Numerical simulations of magnetic suspensions with hydrodynamic and dipole-dipole magnetic interactions. Phys Fluids 29:062004 Gontijo RG, Cunha FR (2017) Numerical simulations of magnetic suspensions with hydrodynamic and dipole-dipole magnetic interactions. Phys Fluids 29:062004
Metadata
Title
Nonlinear motion of an oscillating bubble immersed in a magnetic fluid
Authors
S. Malvar
R. G. Gontijo
F. R. Cunha
Publication date
01-08-2017
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2018
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-017-9917-7

Other articles of this Issue 1/2018

Journal of Engineering Mathematics 1/2018 Go to the issue

Premium Partners