Skip to main content
Top

2024 | OriginalPaper | Chapter

Nonlinear Normal Modes of Highly Flexible Beam Structures Modelled Under the \(SE(2)\) Lie Group Framework

Authors : Amir K. Bagheri, Valentin Sonneville, Ludovic Renson

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We compute the periodic responses of geometrically nonlinear beam structures modelled using the Special Euclidean \(SE(2)\) Lie group formulation using shooting and pseudo-arclength continuation. Nonlinear normal modes (NNMs) are calculated for a cantilever beam and are compared to those obtained using a reference displacement-based finite element (FE) model with von Kàrmàn strains. Some specificities of the shooting algorithm which are unique to the underlying Lie group framework are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bilbao, S., Thomas, O., Touzé, C., Ducceschi, M.: Conservative numerical methods for the full von kàrmàn plate equations. Numer. Methods Partial Differ. Equ. 31, 1948–1970 (2015)CrossRef Bilbao, S., Thomas, O., Touzé, C., Ducceschi, M.: Conservative numerical methods for the full von kàrmàn plate equations. Numer. Methods Partial Differ. Equ. 31, 1948–1970 (2015)CrossRef
2.
go back to reference Jain, S., Tiso, P., Haller, G.: Exact nonlinear model reduction for a von kàrmàn beam: Slow-fast decomposition and spectral submanifolds. J. Sound Vib. 423, 195–211 (2018)CrossRef Jain, S., Tiso, P., Haller, G.: Exact nonlinear model reduction for a von kàrmàn beam: Slow-fast decomposition and spectral submanifolds. J. Sound Vib. 423, 195–211 (2018)CrossRef
3.
go back to reference Simo, J.C.: A finite strain beam formulation. the three-dimensional dynamic problem. part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985) Simo, J.C.: A finite strain beam formulation. the three-dimensional dynamic problem. part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)
4.
go back to reference Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)CrossRef Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)CrossRef
5.
go back to reference Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995)CrossRef Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995)CrossRef
6.
go back to reference Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)MathSciNetCrossRef Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)MathSciNetCrossRef
7.
go back to reference Crisfield, M. A., Jelenić, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 455(1983), 1125–1147 (1999)MathSciNetCrossRef Crisfield, M. A., Jelenić, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 455(1983), 1125–1147 (1999)MathSciNetCrossRef
8.
go back to reference Jelenić, G., Crisfield, M.A.: Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999)MathSciNetCrossRef Jelenić, G., Crisfield, M.A.: Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999)MathSciNetCrossRef
9.
go back to reference Hodges, D.H.: Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J. 41, 1131–1137 (2003)CrossRef Hodges, D.H.: Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J. 41, 1131–1137 (2003)CrossRef
10.
go back to reference Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014)MathSciNetCrossRef Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014)MathSciNetCrossRef
11.
go back to reference Palacios, R.: Nonlinear normal modes in an intrinsic theory of anisotropic beams. J. Sound Vib. 330, 1772–1792 (2011)CrossRef Palacios, R.: Nonlinear normal modes in an intrinsic theory of anisotropic beams. J. Sound Vib. 330, 1772–1792 (2011)CrossRef
12.
go back to reference Debeurre, M., Grolet, A., Cochelin, B., Thomas, O.: Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures. J. Sound Vib. 548, 3 (2023)CrossRef Debeurre, M., Grolet, A., Cochelin, B., Thomas, O.: Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures. J. Sound Vib. 548, 3 (2023)CrossRef
13.
go back to reference Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Oxford University Press, Oxford (2014)CrossRef Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Oxford University Press, Oxford (2014)CrossRef
Metadata
Title
Nonlinear Normal Modes of Highly Flexible Beam Structures Modelled Under the Lie Group Framework
Authors
Amir K. Bagheri
Valentin Sonneville
Ludovic Renson
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_15