Skip to main content
Top

2024 | OriginalPaper | Chapter

Nonlinear System Identification with Multiple Data Sets for Structures with Bolted Joints

Authors : Josh Blackham, Alexandre Spits, Michael Lengger, Sina Safari, Drithi Shetty, Christoph Schwingshackl, Matthew S. Allen, Jean-Philippe Noël, Matthew Brake

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Often, system identification is performed on a single data set at a time. When multiple data sets exist, an approach to considering them is to analyze the resulting identified parameters statistically (such as the average frequency, or 95% confidence interval of extracted parameters, etc.). An alternative could be a method to identify the parameters of a system based on data from multiple measurements; then this would potentially lead to an identified system model that is valid over a much larger operating range. In this chapter, new methods are investigated for the estimation of nonlinear characteristics when large amounts of data are available. The methods include direct nonlinear optimization–based identification techniques like the more commonly used sparse identification package, SINDy, and a more customizable sequential learning algorithm. Besides, parameter initialization (such that any optimized models are able to avoid bad local minima) is studied to accomplish a successful identification. Multiple data sets from an experimental setup of nonlinear structures with the expected source of nonlinearity, i.e., the bolted joints are used in this study to evaluate the performance of the identification methods. For assessing the quality of the resulting models, the responses from simulations are compared to the measured responses of the structures such as amplitude-dependent frequencies and damping ratios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kosova, G., et al.: Nonlinear system identification of a jointed structure using full-field data: part II analysis. In: Nonlinear Structures & Systems, Volume 1: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020. Springer International Publishing (2021) Kosova, G., et al.: Nonlinear system identification of a jointed structure using full-field data: part II analysis. In: Nonlinear Structures & Systems, Volume 1: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020. Springer International Publishing (2021)
2.
go back to reference Safari, S., Londoño, J.: Direct optimisation based model selection and parameter estimation using time-domain data for identifying localised nonlinearities. J. Sound Vib. 51, 116056 (2021)CrossRef Safari, S., Londoño, J.: Direct optimisation based model selection and parameter estimation using time-domain data for identifying localised nonlinearities. J. Sound Vib. 51, 116056 (2021)CrossRef
3.
go back to reference Fasel, U., et al.: Ensemble-SINDy: robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Pro. R. Soc. A. 478(2260), 20210904 (2022)MathSciNetCrossRef Fasel, U., et al.: Ensemble-SINDy: robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Pro. R. Soc. A. 478(2260), 20210904 (2022)MathSciNetCrossRef
4.
go back to reference Safari, S., Londoño, J.M., Monsalve.: Data-driven structural identification of nonlinear assemblies: structures with bolted joints. Mech. Syst. Signal Process. 195, 110296 (2023)CrossRef Safari, S., Londoño, J.M., Monsalve.: Data-driven structural identification of nonlinear assemblies: structures with bolted joints. Mech. Syst. Signal Process. 195, 110296 (2023)CrossRef
5.
go back to reference Brake, M.R.W., Schwingshackl, C.W., Reuß, P.: Observations of variability and repeatability in jointed structures. Mech. Syst. Signal Process. 129, 282–307 (2019)CrossRef Brake, M.R.W., Schwingshackl, C.W., Reuß, P.: Observations of variability and repeatability in jointed structures. Mech. Syst. Signal Process. 129, 282–307 (2019)CrossRef
6.
go back to reference Cooper, S.B., et al.: Effect of far-field structure on joint properties. In: Dynamics of Coupled Structures, Volume 4: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics. Springer International Publishing (2017) Cooper, S.B., et al.: Effect of far-field structure on joint properties. In: Dynamics of Coupled Structures, Volume 4: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics. Springer International Publishing (2017)
7.
go back to reference Jin, M., et al.: Identification of instantaneous frequency and damping from transient decay data. J. Vib. Acoust. 142(5), 051111 (2020)CrossRef Jin, M., et al.: Identification of instantaneous frequency and damping from transient decay data. J. Vib. Acoust. 142(5), 051111 (2020)CrossRef
8.
go back to reference Champion, K., Zheng, P., Aravkin, A.Y., Brunton, S.L., Kutz, J.N.: A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access. 8, 169259–169271 (2020)CrossRef Champion, K., Zheng, P., Aravkin, A.Y., Brunton, S.L., Kutz, J.N.: A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access. 8, 169259–169271 (2020)CrossRef
Metadata
Title
Nonlinear System Identification with Multiple Data Sets for Structures with Bolted Joints
Authors
Josh Blackham
Alexandre Spits
Michael Lengger
Sina Safari
Drithi Shetty
Christoph Schwingshackl
Matthew S. Allen
Jean-Philippe Noël
Matthew Brake
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_18