Skip to main content
Top
Published in: Meccanica 6/2023

17-08-2022

Nonlinear transport coefficients from Grad’s 13–moment approximation

Authors: Francisco J. Uribe, Rosa M. Velasco

Published in: Meccanica | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work we use Grad’s 13–moment approximation to study a stationary shock wave in dilute gases. The conservation equations valid across the shock wave profile depend on the constitutive relations for the viscous tensor and the heat flux. The Grad’s 13-moment equations are taken to obtain the set of constitutive equations and the conservation equations are closed and solved. In addition, such constitutive equations can be written in terms of nonlinear transport coefficients depending on the velocity gradient. Their structure shows that the temperature gradient and the gradient of velocity produce non-trivial contributions in the heat flux as well as in the viscous tensor. A comparison with experiments and some other models is done.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Salas MD (2007) The curious events leading to the theory of shock waves. Shock Waves 16(6):477–487CrossRefMATH Salas MD (2007) The curious events leading to the theory of shock waves. Shock Waves 16(6):477–487CrossRefMATH
3.
go back to reference Taylor GI (1910) The conditions necessary for discontinuous motion in gases. Proc R Soc London Series A 84:371–377CrossRefMATH Taylor GI (1910) The conditions necessary for discontinuous motion in gases. Proc R Soc London Series A 84:371–377CrossRefMATH
5.
go back to reference Becker R (1929) Impact waves and detonation, parts i and ii. Technical report 506, national advisory committee for aeronautics, Washington. From Zeitschrift für Physick, Volume VIII Becker R (1929) Impact waves and detonation, parts i and ii. Technical report 506, national advisory committee for aeronautics, Washington. From Zeitschrift für Physick, Volume VIII
6.
go back to reference Thomas LH (1944) Note on Becker’s theory of the shock front. J Chem Phys 12:449–453CrossRef Thomas LH (1944) Note on Becker’s theory of the shock front. J Chem Phys 12:449–453CrossRef
9.
go back to reference Myong RS (2014) Analytical solutions of shock structure thickness and asymmetry in Navier-Stokes/fourier framework. AIAA J 52:1075–1080CrossRef Myong RS (2014) Analytical solutions of shock structure thickness and asymmetry in Navier-Stokes/fourier framework. AIAA J 52:1075–1080CrossRef
12.
go back to reference Holway LH (1964) Existence of kinetic theory solutions to the shock structure problem. Phys Fluids 7:911–913CrossRefMATH Holway LH (1964) Existence of kinetic theory solutions to the shock structure problem. Phys Fluids 7:911–913CrossRefMATH
13.
go back to reference Gilbarg D, Paolucci D (1953) The structure of shock waves in the continuum theory of fluids. J Ration Mech Anal 2:617–642MathSciNetMATH Gilbarg D, Paolucci D (1953) The structure of shock waves in the continuum theory of fluids. J Ration Mech Anal 2:617–642MathSciNetMATH
14.
go back to reference Weiss W (1995) Continuous shock structure in extended thermodynamics. Phys Rev E 52:5760–5763CrossRef Weiss W (1995) Continuous shock structure in extended thermodynamics. Phys Rev E 52:5760–5763CrossRef
15.
go back to reference Anile AM, Majorana A (1981) Shock structure for heat conducting and viscous fluids. Meccanica 16:149–156CrossRefMATH Anile AM, Majorana A (1981) Shock structure for heat conducting and viscous fluids. Meccanica 16:149–156CrossRefMATH
16.
go back to reference Jou D, Pavon D (1991) Nonlocal and nonlinear effects in shock-waves. Phys Rev A 44:6496–6502CrossRef Jou D, Pavon D (1991) Nonlocal and nonlinear effects in shock-waves. Phys Rev A 44:6496–6502CrossRef
17.
18.
go back to reference Cai Z, Torrilhon M (2019) On the Holway-Weiss debate: convergence of the grad-moment-expansion in kinetic gas theory. Phys Fluids 31(12):126105CrossRef Cai Z, Torrilhon M (2019) On the Holway-Weiss debate: convergence of the grad-moment-expansion in kinetic gas theory. Phys Fluids 31(12):126105CrossRef
19.
go back to reference Boillat G, Ruggeri T (1998) On the shock structure problem for hyperbolic system of balance laws and convex entropy. Contin Mech Thermodyn 10:285–292MathSciNetCrossRefMATH Boillat G, Ruggeri T (1998) On the shock structure problem for hyperbolic system of balance laws and convex entropy. Contin Mech Thermodyn 10:285–292MathSciNetCrossRefMATH
20.
go back to reference Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys Fluids 15:2668–2680MathSciNetCrossRefMATH Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys Fluids 15:2668–2680MathSciNetCrossRefMATH
21.
go back to reference Timokhin MY, Struchtrup H, Kokhanchik AA, Bondar YA (2017) Different variants of R13 moment equations applied to the shock-wave structure. Phys Fluids 29:037105CrossRef Timokhin MY, Struchtrup H, Kokhanchik AA, Bondar YA (2017) Different variants of R13 moment equations applied to the shock-wave structure. Phys Fluids 29:037105CrossRef
23.
go back to reference Myong RS (2014) On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules. Phys Fluids 26(5):056102CrossRef Myong RS (2014) On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules. Phys Fluids 26(5):056102CrossRef
24.
go back to reference Zinner CP, Öttinger HC (2019) Numerical stability with help from entropy: solving a set of 13 moment equations for shock tube problem. J Non-Equilib Thermodyn 44(1):43–69CrossRef Zinner CP, Öttinger HC (2019) Numerical stability with help from entropy: solving a set of 13 moment equations for shock tube problem. J Non-Equilib Thermodyn 44(1):43–69CrossRef
25.
go back to reference Agrawal A, Kushwaha HM, Jadhav RS (2020) Microscale flow and heat transfer. Springer, SwitzerlandCrossRef Agrawal A, Kushwaha HM, Jadhav RS (2020) Microscale flow and heat transfer. Springer, SwitzerlandCrossRef
26.
go back to reference García-Colín LS, Velasco RM, Uribe FJ (2004) Inconsistency in the Moment’s method for solving the Bolztmann equation. J Non-Equilib Thermodyn 29:257–277CrossRefMATH García-Colín LS, Velasco RM, Uribe FJ (2004) Inconsistency in the Moment’s method for solving the Bolztmann equation. J Non-Equilib Thermodyn 29:257–277CrossRefMATH
27.
go back to reference Uribe FJ, García-Colín LS (1999) Nonlinear viscosity and Grad’s method. Phys Rev E 60:4052CrossRef Uribe FJ, García-Colín LS (1999) Nonlinear viscosity and Grad’s method. Phys Rev E 60:4052CrossRef
28.
go back to reference Velasco RM, Uribe FJ (2021) A study on the Holian conjecture and linear irreversible thermodynamics for shock-wave structure. Wave Motion 100:102684MathSciNetCrossRefMATH Velasco RM, Uribe FJ (2021) A study on the Holian conjecture and linear irreversible thermodynamics for shock-wave structure. Wave Motion 100:102684MathSciNetCrossRefMATH
29.
go back to reference Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases. Cambridge University Press, CambridgeMATH Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases. Cambridge University Press, CambridgeMATH
30.
go back to reference Muntz EP, Harnett NL (1969) Molecular velocity distribution function measurements in a normal shock wave. Phys Fluids 12(10):2027–2035CrossRef Muntz EP, Harnett NL (1969) Molecular velocity distribution function measurements in a normal shock wave. Phys Fluids 12(10):2027–2035CrossRef
31.
go back to reference Hurly JJ, Mehl JB (2007) \(^4\)He thermophysical properties: new Ab initio calculations. J Res Natl Stand Technol 112:75–94CrossRef Hurly JJ, Mehl JB (2007) \(^4\)He thermophysical properties: new Ab initio calculations. J Res Natl Stand Technol 112:75–94CrossRef
32.
go back to reference Greenshields CJ, Reese JM (2007) The structure of shock waves as a test of Brenner’s modifications to the Navier-Stokes equations. J Fluid Mech 580:407–429MathSciNetCrossRefMATH Greenshields CJ, Reese JM (2007) The structure of shock waves as a test of Brenner’s modifications to the Navier-Stokes equations. J Fluid Mech 580:407–429MathSciNetCrossRefMATH
33.
go back to reference Velasco RM, Uribe FJ (2019) Shock-wave structure according to a linear irreversible thermodynamic model. Phys Rev E 99(2):023114CrossRef Velasco RM, Uribe FJ (2019) Shock-wave structure according to a linear irreversible thermodynamic model. Phys Rev E 99(2):023114CrossRef
34.
go back to reference Velasco RM (2020) Uribe FJ (2020) Erratum: shock-wave structure according to a linear irreversible thermodynamic model [Phys Rev E 99: 023114 (2019)]. Phys Rev E 1:019903CrossRef Velasco RM (2020) Uribe FJ (2020) Erratum: shock-wave structure according to a linear irreversible thermodynamic model [Phys Rev E 99: 023114 (2019)]. Phys Rev E 1:019903CrossRef
35.
go back to reference Uribe FJ, Velasco RM (2018) Shock-wave structure based on the Navier-Stokes-fourier equations. Phys Rev E 97:043117MathSciNetCrossRef Uribe FJ, Velasco RM (2018) Shock-wave structure based on the Navier-Stokes-fourier equations. Phys Rev E 97:043117MathSciNetCrossRef
36.
Metadata
Title
Nonlinear transport coefficients from Grad’s 13–moment approximation
Authors
Francisco J. Uribe
Rosa M. Velasco
Publication date
17-08-2022
Publisher
Springer Netherlands
Published in
Meccanica / Issue 6/2023
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-022-01565-x

Other articles of this Issue 6/2023

Meccanica 6/2023 Go to the issue

Premium Partners