Skip to main content
Top

17-11-2024

Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data

Author: Pao-sheng Shen

Published in: Lifetime Data Analysis

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157–1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aalen OO (1976) Nonparametric inference in connection with multiple decrement models. Scand J Stat 3:15–27MathSciNetMATH Aalen OO (1976) Nonparametric inference in connection with multiple decrement models. Scand J Stat 3:15–27MathSciNetMATH
go back to reference Alioum A, Commenges D (1996) A proportional hazards model for arbitrarily censored and truncated data. Biometrics 52:512–524CrossRefMATH Alioum A, Commenges D (1996) A proportional hazards model for arbitrarily censored and truncated data. Biometrics 52:512–524CrossRefMATH
go back to reference Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes
go back to reference Balakrishnan N, Mitra D (2011) Likelihood inference for log-normal data with left truncation and right censoring with an illustration. J Stat Plan Inference 141:3536–3553CrossRefMATH Balakrishnan N, Mitra D (2011) Likelihood inference for log-normal data with left truncation and right censoring with an illustration. J Stat Plan Inference 141:3536–3553CrossRefMATH
go back to reference Balakrishnan N, Mitra D (2012) Left truncated and right censored Weibull data and likelihood inference with an illustration. Comput Stat Data Anal 56:4011–4025MathSciNetCrossRefMATH Balakrishnan N, Mitra D (2012) Left truncated and right censored Weibull data and likelihood inference with an illustration. Comput Stat Data Anal 56:4011–4025MathSciNetCrossRefMATH
go back to reference Balakrishnan N, Mitra D (2014) EM-based likelihood inference for some lifetime distributions based on left truncated and right censored data and associated model discrimination. S Afr Stat J 48:125–171MathSciNetMATH Balakrishnan N, Mitra D (2014) EM-based likelihood inference for some lifetime distributions based on left truncated and right censored data and associated model discrimination. S Afr Stat J 48:125–171MathSciNetMATH
go back to reference Beyersmann J, Allignol A, Schumacher M (2012) Competing risks and multistate models with R. Springer, New YorkCrossRefMATH Beyersmann J, Allignol A, Schumacher M (2012) Competing risks and multistate models with R. Springer, New YorkCrossRefMATH
go back to reference Cheng Y, Shen P-S, Zhang Z, Lai HJ (2016) Nonparametric association analysis of bivariate left-truncated competing risks data. Biom J 58:635–651MathSciNetCrossRefMATH Cheng Y, Shen P-S, Zhang Z, Lai HJ (2016) Nonparametric association analysis of bivariate left-truncated competing risks data. Biom J 58:635–651MathSciNetCrossRefMATH
go back to reference de Uña-Álvarez J (2020) Nonparametric estimation of the cumulative incidences of competing risks under double truncation. Biom J 62:852–867MathSciNetCrossRefMATH de Uña-Álvarez J (2020) Nonparametric estimation of the cumulative incidences of competing risks under double truncation. Biom J 62:852–867MathSciNetCrossRefMATH
go back to reference de Uña-Álvarez J, Van Keilegom I (2021) Efron-Petrosian integrals for doubly truncated data with covariates: an asymptotic analysis. Bernoulli 27:249–273MathSciNetMATH de Uña-Álvarez J, Van Keilegom I (2021) Efron-Petrosian integrals for doubly truncated data with covariates: an asymptotic analysis. Bernoulli 27:249–273MathSciNetMATH
go back to reference de Uña-Álvarez J, Moreira C, Crujeiras RM (2021) The statistical analysis of doubly truncated data: with applications in R. Wiley, HobokenMATH de Uña-Álvarez J, Moreira C, Crujeiras RM (2021) The statistical analysis of doubly truncated data: with applications in R. Wiley, HobokenMATH
go back to reference Emura T, Konno Y, Michimae H (2015) Statistical inference based on the nonparametric maximum likelihood estimator under double truncation. Lifetime Data Anal 21:397–418MathSciNetCrossRefMATH Emura T, Konno Y, Michimae H (2015) Statistical inference based on the nonparametric maximum likelihood estimator under double truncation. Lifetime Data Anal 21:397–418MathSciNetCrossRefMATH
go back to reference Frydman H (1994) A note on nonparametric estimation of the distribution function from interval-censored and truncated data. J R Stat Soc Ser B 56:71–74MathSciNetCrossRefMATH Frydman H (1994) A note on nonparametric estimation of the distribution function from interval-censored and truncated data. J R Stat Soc Ser B 56:71–74MathSciNetCrossRefMATH
go back to reference Hong Y, Meeker WQ, McCalley JD (2009) Prediction of remaining life of power transformers based on left truncated and right censored lifetime data. Ann Appl Stat 3:857–879MathSciNetCrossRefMATH Hong Y, Meeker WQ, McCalley JD (2009) Prediction of remaining life of power transformers based on left truncated and right censored lifetime data. Ann Appl Stat 3:857–879MathSciNetCrossRefMATH
go back to reference Hudgens MG (2005) On nonparametric maximum likelihood estimation with interval censoring and truncation. J R Stat Soc Ser B 67:573–587MathSciNetCrossRefMATH Hudgens MG (2005) On nonparametric maximum likelihood estimation with interval censoring and truncation. J R Stat Soc Ser B 67:573–587MathSciNetCrossRefMATH
go back to reference Hudgens MG, Satten GA, Longini IM Jr (2001) Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation. Biometrics 57:74–80MathSciNetCrossRefMATH Hudgens MG, Satten GA, Longini IM Jr (2001) Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation. Biometrics 57:74–80MathSciNetCrossRefMATH
go back to reference Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, New YorkCrossRefMATH Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, New YorkCrossRefMATH
go back to reference Kundu D, Mitra D, Ganguly A (2017) Analysis of left truncated and right censored competing risks data. Comput Stat Data Anal 108:12–26MathSciNetCrossRefMATH Kundu D, Mitra D, Ganguly A (2017) Analysis of left truncated and right censored competing risks data. Comput Stat Data Anal 108:12–26MathSciNetCrossRefMATH
go back to reference Moreira C, Van Keilegom I (2013) Bandwidth selection for Kernel density estimation with doubly truncated data. Comput Stat Data Anal 61:107–123MathSciNetCrossRefMATH Moreira C, Van Keilegom I (2013) Bandwidth selection for Kernel density estimation with doubly truncated data. Comput Stat Data Anal 61:107–123MathSciNetCrossRefMATH
go back to reference Moreira C, de Uña-Álvarez J (2010b) A semiparametric estimator of survival for doubly truncated data. Stat Med 29(30):3147–3159MathSciNetCrossRefMATH Moreira C, de Uña-Álvarez J (2010b) A semiparametric estimator of survival for doubly truncated data. Stat Med 29(30):3147–3159MathSciNetCrossRefMATH
go back to reference Moreira C, de Uña-Álvarez J, Crujeiras RM (2010) DTDA: an R package to analyze randomly truncated data. J Stat Softw 37(7):1–20CrossRefMATH Moreira C, de Uña-Álvarez J, Crujeiras RM (2010) DTDA: an R package to analyze randomly truncated data. J Stat Softw 37(7):1–20CrossRefMATH
go back to reference Moreira C, de Uña-Álvarez J, Keilegom IV (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat 29:1365–1379MathSciNetCrossRefMATH Moreira C, de Uña-Álvarez J, Keilegom IV (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat 29:1365–1379MathSciNetCrossRefMATH
go back to reference Moreira C, de Uña-Álvarez J, Meira-Machado L (2016) Nonparametric regression with doubly truncated data. Comput Stat Data Anal 93:294–307MathSciNetCrossRefMATH Moreira C, de Uña-Álvarez J, Meira-Machado L (2016) Nonparametric regression with doubly truncated data. Comput Stat Data Anal 93:294–307MathSciNetCrossRefMATH
go back to reference Pan W, Chappell R (1998) A nonparametric estimator of survival functions for arbitrarily truncated and censored data. Lifetime Data Anal 4:187–202CrossRefMATH Pan W, Chappell R (1998) A nonparametric estimator of survival functions for arbitrarily truncated and censored data. Lifetime Data Anal 4:187–202CrossRefMATH
go back to reference Scheike TH, Zhang M-J (2011) Analyzing competing risk data using the R timereg package. J Stat Softw 38(2):1–16CrossRefMATH Scheike TH, Zhang M-J (2011) Analyzing competing risk data using the R timereg package. J Stat Softw 38(2):1–16CrossRefMATH
go back to reference Shen P-S (2012a) Estimation of the bivariate cause-specific distribution function with left-truncated competing risks data. Commun Stat Simul Comput 41:99–110MathSciNetCrossRefMATH Shen P-S (2012a) Estimation of the bivariate cause-specific distribution function with left-truncated competing risks data. Commun Stat Simul Comput 41:99–110MathSciNetCrossRefMATH
go back to reference Shen P-S (2013) Regression analysis of interval censored and doubly truncated data with linear transformation models. Comput Stat 28:581–596MathSciNetCrossRefMATH Shen P-S (2013) Regression analysis of interval censored and doubly truncated data with linear transformation models. Comput Stat 28:581–596MathSciNetCrossRefMATH
go back to reference Shen P-S (2014) A generalization of Turnbull’s estimator for interval-censored and doubly truncated data. Commun Stat Theory Methods 43:2952–2972MathSciNetCrossRefMATH Shen P-S (2014) A generalization of Turnbull’s estimator for interval-censored and doubly truncated data. Commun Stat Theory Methods 43:2952–2972MathSciNetCrossRefMATH
go back to reference Shen P-S (2022a) Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring. Comput Stat 37:29–42MathSciNetCrossRefMATH Shen P-S (2022a) Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring. Comput Stat 37:29–42MathSciNetCrossRefMATH
go back to reference Turnbull BW (1976) The empirical distribution with arbitrarily grouped, censored and truncated data. J R Stat Soc Ser B 38:290–295MathSciNetCrossRefMATH Turnbull BW (1976) The empirical distribution with arbitrarily grouped, censored and truncated data. J R Stat Soc Ser B 38:290–295MathSciNetCrossRefMATH
go back to reference Zhu H, Wang M-C (2012) Analysing bivariate survival data with interval sampling and application to cancer epidemiology. Biometrika 99:345–361MathSciNetCrossRefMATH Zhu H, Wang M-C (2012) Analysing bivariate survival data with interval sampling and application to cancer epidemiology. Biometrika 99:345–361MathSciNetCrossRefMATH
go back to reference Zhu H, Wang M-C (2014) Nonparametric inference on bivariate survival data with interval sampling: association estimation and testing. Biometrika 101:519–533MathSciNetCrossRefMATH Zhu H, Wang M-C (2014) Nonparametric inference on bivariate survival data with interval sampling: association estimation and testing. Biometrika 101:519–533MathSciNetCrossRefMATH
go back to reference Zhu H, Wang M-C (2015) A semi-stationary copula model approach for bivariate survival data with interval sampling. International Journal of Biostatistics 11:151–173MathSciNetCrossRefMATH Zhu H, Wang M-C (2015) A semi-stationary copula model approach for bivariate survival data with interval sampling. International Journal of Biostatistics 11:151–173MathSciNetCrossRefMATH
Metadata
Title
Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data
Author
Pao-sheng Shen
Publication date
17-11-2024
Publisher
Springer US
Published in
Lifetime Data Analysis
Print ISSN: 1380-7870
Electronic ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-024-09641-y

Premium Partner