Skip to main content
Top

2024 | OriginalPaper | Chapter

Note on the Rank of 2-Class Group of \(\mathbb {Q}(i,\sqrt{p}, \sqrt{d})\)

Authors : Mohamed Mahmoud Chems-Eddin, Abdelkader Zekhnini

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the 2-class group of number fields, particularly focusing on the 2-rank of the class group of fields defined by a prime number and a square-free integer. It builds on the ambiguous class number formula and previous research on quartic and triquadratic number fields. The main theorem provides explicit conditions and formulas for the 2-rank of the class group, differentiating between cases where the integer is prime or composite. The proof involves key lemmas that explore the ramification of prime ideals and the behavior of norm residue symbols. The chapter concludes with numerical examples obtained using Pari/gp, showcasing the practical application of the theoretical findings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Azizi, A.: Sur le \(2\)-groupe de classes d’idéaux de \(\mathbb{Q} (\sqrt{d}, i)\). Rend. Circ. Mat. Palermo 48(2), 71–92 (1999) Azizi, A.: Sur le \(2\)-groupe de classes d’idéaux de \(\mathbb{Q} (\sqrt{d}, i)\). Rend. Circ. Mat. Palermo 48(2), 71–92 (1999)
2.
go back to reference Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur \(\mathbb{Q} \). Ann. Sci. Math. Qué. 23, 15–21 (1999) Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur \(\mathbb{Q} \). Ann. Sci. Math. Qué. 23, 15–21 (1999)
3.
go back to reference Azizi , A., et al.: Benhamza, Sur la capitulation des \(2\)-classes d’idéaux de \(\mathbb{Q}(\sqrt{d}, \sqrt{-2})\). Ann. Sci. Math. Québec. 29, 1–20 (2005) Azizi , A., et al.: Benhamza, Sur la capitulation des \(2\)-classes d’idéaux de \(\mathbb{Q}(\sqrt{d}, \sqrt{-2})\). Ann. Sci. Math. Québec. 29, 1–20 (2005)
4.
go back to reference Azizi, A., Chems-Eddin, M.M., Zekhnini, A.: On the rank of the \(2\)-class group of some imaginary triquadratic number fields. Rend. Circ. Mat. Palermo 70, 1751–1769 (2021)MathSciNetCrossRef Azizi, A., Chems-Eddin, M.M., Zekhnini, A.: On the rank of the \(2\)-class group of some imaginary triquadratic number fields. Rend. Circ. Mat. Palermo 70, 1751–1769 (2021)MathSciNetCrossRef
5.
go back to reference Azizi, A., Mouhib, A.: Le \(2\)-rang du groupe de classes de certains corps biquadratiques et applications. Internat. J. Math. 15, 169–182 (2004) Azizi, A., Mouhib, A.: Le \(2\)-rang du groupe de classes de certains corps biquadratiques et applications. Internat. J. Math. 15, 169–182 (2004)
6.
go back to reference Azizi, A., Mouhib, A.: Sur le rang du \(2\)-groupe de classes de \(\mathbb{Q} ( \sqrt{m},\sqrt{d} )\) où \(m=2\) ou un premier \(p \equiv 1 ~(mod \; 4)\) . Trans. Am. Math. Soc. 353, 2741–2752 (2001) Azizi, A., Mouhib, A.: Sur le rang du \(2\)-groupe de classes de \(\mathbb{Q} ( \sqrt{m},\sqrt{d} )\)\(m=2\) ou un premier \(p \equiv 1 ~(mod \; 4)\) . Trans. Am. Math. Soc. 353, 2741–2752 (2001)
8.
go back to reference Azizi, A., Taous, M., Zekhnini, A.: On the \(2\)-rank of the class group of \(\mathbb{Q} ( \sqrt{p},\sqrt{q},\sqrt{-1})\). Period. Math. Hung. 69, 231–238 (2014)CrossRef Azizi, A., Taous, M., Zekhnini, A.: On the \(2\)-rank of the class group of \(\mathbb{Q} ( \sqrt{p},\sqrt{q},\sqrt{-1})\). Period. Math. Hung. 69, 231–238 (2014)CrossRef
9.
10.
go back to reference Brown, E., Parry, C.J.: The \(2\)-class group of certain biquadratic number fields. J. Reine Angew. Math. 295, 61–71 (1977)MathSciNet Brown, E., Parry, C.J.: The \(2\)-class group of certain biquadratic number fields. J. Reine Angew. Math. 295, 61–71 (1977)MathSciNet
11.
go back to reference Chems-Eddin, M.M., El Fadil, L.: The 2-class group of certain families of imaginary triquadratic fields. Math. Slovaca 73, 835–848 (2023) Chems-Eddin, M.M., El Fadil, L.: The 2-class group of certain families of imaginary triquadratic fields. Math. Slovaca 73, 835–848 (2023)
12.
go back to reference Chems-Eddin, M.M., Zekhnini, A., Azizi, A.: Units and \(2\)-class field towers of some multiquadratic number fields. Turk. J. Math. 44, 1466–1483 (2020)MathSciNetCrossRef Chems-Eddin, M.M., Zekhnini, A., Azizi, A.: Units and \(2\)-class field towers of some multiquadratic number fields. Turk. J. Math. 44, 1466–1483 (2020)MathSciNetCrossRef
13.
go back to reference Conner, P.E., Hurrelbrink, J.: Class number parity. In: Series in Pure Mathematics, vol. 8. World Scientific, Singapore (1988) Conner, P.E., Hurrelbrink, J.: Class number parity. In: Series in Pure Mathematics, vol. 8. World Scientific, Singapore (1988)
14.
go back to reference Lemmermeyer, F.: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28, 415–421 (2013)MathSciNet Lemmermeyer, F.: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28, 415–421 (2013)MathSciNet
15.
go back to reference Lemmermeyer, F.: Reciprocity laws, from Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Berlin (2000) Lemmermeyer, F.: Reciprocity laws, from Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Berlin (2000)
Metadata
Title
Note on the Rank of 2-Class Group of
Authors
Mohamed Mahmoud Chems-Eddin
Abdelkader Zekhnini
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_8

Premium Partner