Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Notes on Lusternik-Schnirelman and Morse Theories

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter (longer than the others) we will present techniques that are close to other modern research themes: existence theorems for critical points of functions. We will move in many directions, but mainly using constructions that are taken from the techniques in symplectic geometry described up to now. In particular, those on generating functions for Lagrangian submanifolds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Even though today there are ‘weak’ formulations of Morse theory extending it to degenerate critical points (maybe first in [86]), the universally known definition of Morse function is, up to today, that of functions whose critical points are all non-degenerate.
 
2
That is, it is defined for \(t \in \mathbb{R}\).
 
3
That is, any Cauchy sequence does converge in it.
 
4
That are clearly Palais-Smale.
 
5
The set of critical points is a closed set, its complement is an open set, and X b ∖ X a is in the interior of such complement: it is then easy to define two open neighborhoods A 1 and A 2 as above.
 
6
Using Urysohn lemma, given two closed, disjoint sets cl(A 1) and X ∖ A 2, it is possible to define a C -function ϕ, that has value 1 in cl(A 1) and has value 0 in X ∖ A 2. So, for example, \(\bar{Y }:= -\phi \frac{\nabla f(x)} {\vert \nabla f(x)\vert ^{2}}\).
 
7
This means that there is no constant c > 0 such that \(\vert f^{{\prime}}(x)\vert > c\) on S.
 
8
In other words, c cannot be an accumulation point of critical values.
 
9
Once again, Palais-Smale condition implies this fact (Condition (C)): \(f^{-1}([c -\varepsilon _{0},c +\varepsilon _{0}])\setminus V _{0}\) is closed, so we cannot find in it sequence {x j } with df (x j ) → 0, in fact, in such a case there exists some subsequence converging to a critical point x , which should belong to the closed set \(f^{-1}([c -\varepsilon _{0},c +\varepsilon _{0}])\setminus V _{0}\), absurd.
 
10
Recall that H 0(X) represents the constant functions on the connected components of X, if X = B (ball) then \(H^{0}(B) = \mathbb{R}\), while if k > 0: H k (B) = { 0}.
 
11
That is, with non degenerate Hessian \(f^{{\prime\prime}}\big\vert _{f^{{\prime}}=0}\).
 
12
Observe that, from the definition of GFQI, c is uniform in x.
 
13
See the unpublished work of Ottolenghi-Viterbo [100] and the beautiful book of Siburg [107].
 
14
Here we denote by \(\mathcal{F}: \text{Sym}(k \times k) \times \mathbb{R}^{n} \rightarrow \text{Sym}(k \times k)\ \ \text{the map}\ \ (R,x)\mapsto R^{T}\mathit{QR} - B(x)\).
 
15
\(f_{x}^{-\infty } = f^{-\infty },\ \forall x \in U\).
 
16
I thank Gian Maria Dall’Ara which pointed out to me this nice fact.
 
17
Arnol’d conjecture is itself an extension, more or less natural, of the last geometric theorem of Poincaré.
 
18
In a non trivial way, see [119], Prop. 3.3 p. 693.
 
19
Again, by Lusternik-Schnirelman Theorem 7.7.
 
20
c stands for capacity, see [55].
 
21
This is not restrictive, since by Whitney theorem it is sufficient N paracompact.
 
22
By coordinates, \(v_{g} = \sqrt{\det g}\,\mathit{dx}^{1} \wedge \ldots \wedge \mathit{dx}^{n}\).
 
23
By coordinates, for any scalar function Φ, the related gradient vector field X is defined by \(X^{i} = (\sharp d\varPhi )^{i} = (\nabla _{g}\varPhi )^{i} = g^{\mathit{ij}} \frac{\partial \varPhi } {\partial x^{j}}\).
 
24
These formulas were first presented by Hamilton in the “Second essay on a general method in dynamics”, 1835. The author thanks Sergio Benenti for pointing out this remarkable fact.
 
25
In the Section 28 of Gantmacher [66], this example is really quoted as ‘perturbation theory’.
 
26
It is sufficient to see that contractive perturbations of the identity are bi-Lipschitz homeomorphisms: (Rem: \(\vert x - y\vert \geq \big\vert \vert x\vert -\vert y\vert \big\vert \geq \vert x\vert -\vert y\vert \)) Since f: X → X is contractive, | f(x 1) − f(x 2) | ≤ λ | x 1x 2 | ,   λ < 1, then If is injective: \(\vert (x_{1}-f(x_{1}))-(x_{2}-f(x_{2}))\vert = \vert (x_{1}-x_{2})-(f(x_{1})-f(x_{2}))\vert \geq \vert x_{1}-x_{2}\vert -\vert f(x_{1})-f(x_{2})\vert \geq (1-\lambda )\vert x_{1}-x_{2}\vert \). Thus the inverse g di If is Lipschitz with \(\mathrm{Lip}(g) = \frac{1} {1-\lambda }\). The surjectivity of If is gained from the fixed point: for any y ∈ X, the map xy + f(x) is obviously contractive, then there exists an unique x such that x = y + f(x), so that xf(x) = y. □ 
 
27
This new definition of Generating Function Weakly Quadratic at Infinity, is equivalent to the definition of GFQI; this equivalence was established by Viterbo and Theret [113, 114].
 
Literature
3.
go back to reference B. Aebischer, et al., Symplectic Geometry. Progress in Mathematics, (Boston, Mass.), vol. 124 (Birkhäuser, Basel, 1994), xii, 239p B. Aebischer, et al., Symplectic Geometry. Progress in Mathematics, (Boston, Mass.), vol. 124 (Birkhäuser, Basel, 1994), xii, 239p
7.
go back to reference V.I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989) V.I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989)
11.
go back to reference M. Audin, M. Damian, Morse Theory and Floer Homology. Universitext, vol. XIV (Springer, London, 2014), 596pp. Original French edition published by EDP Sciences, Les Ulis Cedex A, France, 2010 M. Audin, M. Damian, Morse Theory and Floer Homology. Universitext, vol. XIV (Springer, London, 2014), 596pp. Original French edition published by EDP Sciences, Les Ulis Cedex A, France, 2010
12.
go back to reference A. Banyaga, On the group of strong symplectic homeomorphisms. CUBO, Math. J. 12(03), 49–69 (2010) A. Banyaga, On the group of strong symplectic homeomorphisms. CUBO, Math. J. 12(03), 49–69 (2010)
14.
go back to reference S. Benenti, Hamiltonian Optics and Generating Families (Bibliopolis, Neaples, 2004) S. Benenti, Hamiltonian Optics and Generating Families (Bibliopolis, Neaples, 2004)
15.
go back to reference S. Benenti, Hamiltonian Structures and Generating Families. Universitext (Springer, New York, 2011)CrossRefMATH S. Benenti, Hamiltonian Structures and Generating Families. Universitext (Springer, New York, 2011)CrossRefMATH
17.
go back to reference O. Bernardi, F. Cardin, On Poincaré-Birkhoff periodic orbits for mechanical Hamiltonian systems on \(T^{{\ast}}\mathbb{T}^{n}\). J. Math. Phys. 47, 072701-1–072701-15 (2006) O. Bernardi, F. Cardin, On Poincaré-Birkhoff periodic orbits for mechanical Hamiltonian systems on \(T^{{\ast}}\mathbb{T}^{n}\). J. Math. Phys. 47, 072701-1–072701-15 (2006)
21.
go back to reference R. Bott, L. Tu, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82 (Springer, New York/Berlin, 1982), xiv+331pp R. Bott, L. Tu, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82 (Springer, New York/Berlin, 1982), xiv+331pp
30.
33.
go back to reference M. Chaperon, Une idée du type “géodésiques brisées” pour les systèmes Hamiltoniens. C. R. Acad. Sci. Paris Sér. I Math. 298(13), 293–296 (1984)MATHMathSciNet M. Chaperon, Une idée du type “géodésiques brisées” pour les systèmes Hamiltoniens. C. R. Acad. Sci. Paris Sér. I Math. 298(13), 293–296 (1984)MATHMathSciNet
35.
go back to reference M. Chaperon, Familles génératrices. Cours l’école d’été Erasmus de Samos (Publication Erasmus de l’Université de Thessalonique, 1993) M. Chaperon, Familles génératrices. Cours l’école d’été Erasmus de Samos (Publication Erasmus de l’Université de Thessalonique, 1993)
46.
go back to reference B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry—Methods and Applications. Part III. Introduction to Homology Theory. Graduate Texts in Mathematics, vol. 124 (Springer, New York, 1990), x+416pp B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry—Methods and Applications. Part III. Introduction to Homology Theory. Graduate Texts in Mathematics, vol. 124 (Springer, New York, 1990), x+416pp
53.
go back to reference Y. Eliashberg, A theorem on the structure of wave fronts and applications in symplectic topology. Funct. Anal. Appl. 21, 227–232 (1987)CrossRefMathSciNet Y. Eliashberg, A theorem on the structure of wave fronts and applications in symplectic topology. Funct. Anal. Appl. 21, 227–232 (1987)CrossRefMathSciNet
65.
go back to reference S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext, 3rd edn. (Springer, Berlin, 2004), xvi+322pp S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext, 3rd edn. (Springer, Berlin, 2004), xvi+322pp
66.
go back to reference F. Gantmacher, Lectures in Analytical Mechanics (Mir Publications, Moscow, 1975), 264pp F. Gantmacher, Lectures in Analytical Mechanics (Mir Publications, Moscow, 1975), 264pp
67.
go back to reference C. Godbillon, Éléments de topologie algébrique (Hermann, Paris, 1971), 249ppMATH C. Godbillon, Éléments de topologie algébrique (Hermann, Paris, 1971), 249ppMATH
68.
go back to reference C. Golé, Symplectic Twist Maps. Global Variational Techniques. Advanced Series in Nonlinear Dynamics, vol. 18 (World Scientific, River Edge, 2001), xviii+305pp C. Golé, Symplectic Twist Maps. Global Variational Techniques. Advanced Series in Nonlinear Dynamics, vol. 18 (World Scientific, River Edge, 2001), xviii+305pp
72.
go back to reference H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts (Birkhäuser, Basel, 1994), xiv+341pp H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts (Birkhäuser, Basel, 1994), xiv+341pp
75.
go back to reference V. Humilière, On some completions of the space of Hamiltonian maps. Bull. Soc. Math. Fr. 136(3), 373–404 (2008)MATH V. Humilière, On some completions of the space of Hamiltonian maps. Bull. Soc. Math. Fr. 136(3), 373–404 (2008)MATH
85.
go back to reference L. Lusternik, L. Schnirelman, Méthodes topologiques dans les problèmes variationnels (Hermann, Paris, 1934)MATH L. Lusternik, L. Schnirelman, Méthodes topologiques dans les problèmes variationnels (Hermann, Paris, 1934)MATH
86.
go back to reference A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. (4) 11(3), 1–32 (1975) A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. (4) 11(3), 1–32 (1975)
91.
go back to reference D. McDuff, D. Salamon, Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. (The Clarendon/Oxford University Press, New York, 1998) D. McDuff, D. Salamon, Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. (The Clarendon/Oxford University Press, New York, 1998)
93.
go back to reference J. Milnor, Morse Theory, vol. 51 (Princeton University Press, Princeton, 1963), vi+153pp J. Milnor, Morse Theory, vol. 51 (Princeton University Press, Princeton, 1963), vi+153pp
100.
go back to reference A. Ottolenghi, C. Viterbo, Solutions generalisees pour l’equation de Hamilton-Jacobi dans le cas d’evolution (pre-print) A. Ottolenghi, C. Viterbo, Solutions generalisees pour l’equation de Hamilton-Jacobi dans le cas d’evolution (pre-print)
107.
go back to reference K.F. Siburg, The Principle of Least Action in Geometry and Dynamics. Lecture Notes in Mathematics, 1844 (Springer, Berlin, 2004) K.F. Siburg, The Principle of Least Action in Geometry and Dynamics. Lecture Notes in Mathematics, 1844 (Springer, Berlin, 2004)
108.
go back to reference M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 34, 2nd edn. (Springer, Berlin, 1996), xvi+272pp M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 34, 2nd edn. (Springer, Berlin, 1996), xvi+272pp
113.
go back to reference D. Theret, Utilisation des fonctions génératrices en géométrie symplectique globale. PhD thesis, Université Paris 7, 1996 D. Theret, Utilisation des fonctions génératrices en géométrie symplectique globale. PhD thesis, Université Paris 7, 1996
114.
117.
go back to reference W.M. Tulczyjew, Geometric Formulation of Physical Theories, Statics and Dynamics of Mechanical Systems (Bibliopolis, Neaples, 1989) W.M. Tulczyjew, Geometric Formulation of Physical Theories, Statics and Dynamics of Mechanical Systems (Bibliopolis, Neaples, 1989)
120.
go back to reference C. Viterbo, Solutions of Hamilton-Jacobi Equations and Symplectic Geometry. Addendum to: Séminaire sur les Équations aux Dérivžées Partielles. 1994–1995 (École Polytech., Palaiseau, 1995) C. Viterbo, Solutions of Hamilton-Jacobi Equations and Symplectic Geometry. Addendum to: Séminaire sur les Équations aux Dérivžées Partielles. 1994–1995 (École Polytech., Palaiseau, 1995)
121.
go back to reference C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 217 (Springer, Dordrecht, 2006), pp. 439–459 C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 217 (Springer, Dordrecht, 2006), pp. 439–459
122.
go back to reference C. Viterbo, Symplectic Homogenization (2014). arXiv:0801.0206v3 C. Viterbo, Symplectic Homogenization (2014). arXiv:0801.0206v3
124.
go back to reference A. Weinstein, Lectures on Symplectic Manifolds. CBMS Conference Series (AMS 29, Providence, 1977) A. Weinstein, Lectures on Symplectic Manifolds. CBMS Conference Series (AMS 29, Providence, 1977)
Metadata
Title
Notes on Lusternik-Schnirelman and Morse Theories
Author
Franco Cardin
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-11026-4_7

Premium Partner