2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
These notes present elementary introduction to tractors based on classical examples, together with glimpses towards modern invariant differential calculus related to vast class of Cartan geometries, the so-called parabolic geometries.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1
2
3
4
Here
u ⋅
h is multiplication in
G and
h
−1 ⋅
v is the left-action of
H or
G on
\(\mathbb {V}\) given by the chosen representation.
We know that
μ
a must be of weight 1 because covariant differentiation does not alter weights and
σ is already of weight 1.
Recall that
\(\pi \colon \mathcal {A}\mathcal {M} \to TM \) is the projection from sequence (
2.38).
We iterate the first jet prolongation. Considering the first jets of sections of a bundle
\(\mathcal W\), the jets in a fiber of
\(J^1(J^1\mathcal W)\) look in coordinates as 4-tuples
\((y^p,y^p_i,Y^p_j,Y^p_{ij})\) were
\(Y^p_{ij}\) do not need to be symmetric. These are the non-holonomic 2-jets. The semi-holonomic ones remove part of the redundancy by requesting that the two natural projections to 1-jets coincide, i.e.,
\(y^p_i=Y^p_i\). This construction extends to all orders and the semi-holonomic jets look in coordinates nearly as the holonomic ones, just losing the symmetry of the derivatives. See, e.g., [
17] for detailed exposition.
1.
go back to reference T.N. Bailey, M.G. Eastwood, A. Rod Gover, Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 24 (1994), 1191–1217. MathSciNetCrossRef T.N. Bailey, M.G. Eastwood, A. Rod Gover,
Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 24 (1994), 1191–1217.
MathSciNetCrossRef
2.
go back to reference R.J. Baston, Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential Invariants, Duke Math. J. 63 (1991), 81–111, 113–138. MathSciNetCrossRef R.J. Baston, Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential Invariants, Duke Math. J. 63 (1991), 81–111, 113–138.
MathSciNetCrossRef
3.
go back to reference R.J. Baston, M.G. Eastwood, The Penrose Transform: Its Interaction with Representation Theory, Courier Dover Publications, (2nd edition, 2016), 256pp. R.J. Baston, M.G. Eastwood, The Penrose Transform: Its Interaction with Representation Theory, Courier Dover Publications, (2nd edition, 2016), 256pp.
4.
go back to reference I.N. Bernstein, I.M. Gelfand, S.I. Gelfand, Differential operators on the base affine space and a study of g-modules, in “Lie Groups and their Representations” (ed. I.M. Gelfand) Adam Hilger 1975, 21–64. I.N. Bernstein, I.M. Gelfand, S.I. Gelfand, Differential operators on the base affine space and a study of g-modules, in “Lie Groups and their Representations” (ed. I.M. Gelfand) Adam Hilger 1975, 21–64.
5.
go back to reference D.M.J. Calderbank, T. Diemer, Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. MathSciNetMATH D.M.J. Calderbank, T. Diemer,
Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103.
MathSciNetMATH
6.
go back to reference D.M.J. Calderbank, T. Diemer, V. Souček, Ricci-corrected derivatives and invariant differential operators, Diff. Geom. Appl. 23 (2005) 149–175. MathSciNetCrossRef D.M.J. Calderbank, T. Diemer, V. Souček,
Ricci-corrected derivatives and invariant differential operators, Diff. Geom. Appl. 23 (2005) 149–175.
MathSciNetCrossRef
7.
go back to reference D.M.J. Calderbank, J. Slovák, V. Souček, Subriemannian metrics and the metrizability of parabolic geometries, Journal of Geometric Analysis (2019), 32pp. ( https://doi.org/10.1007/s12220-019-00320-1). CrossRef D.M.J. Calderbank, J. Slovák, V. Souček,
Subriemannian metrics and the metrizability of parabolic geometries, Journal of Geometric Analysis (2019), 32pp. (
https://doi.org/10.1007/s12220-019-00320-1).
CrossRef
8.
go back to reference A. Čap, A.R. Gover, Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1511–1548. MathSciNetCrossRef A. Čap, A.R. Gover,
Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1511–1548.
MathSciNetCrossRef
9.
go back to reference A. Čap, A. R. Gover, Matthias Hammerl, Normal BGG solutions and polynomials, Internat. J. Math. 23 (2012), no. 11, 1250117, 29 pp. A. Čap, A. R. Gover, Matthias Hammerl,
Normal BGG solutions and polynomials, Internat. J. Math. 23 (2012), no. 11, 1250117, 29 pp.
10.
go back to reference A. Čap, J. Slovák, V. Souček, Bernstein-Gelfand-Gelfand sequences, Annals of Mathematics, Princeton University: The Johns Hopkins University Press, 2001, vol. 154, No 1, p. 97–113. (extended, more understandable version as ESI preprint No 722, see www.esi.ac.at). A. Čap, J. Slovák, V. Souček,
Bernstein-Gelfand-Gelfand sequences, Annals of Mathematics, Princeton University: The Johns Hopkins University Press, 2001, vol. 154, No 1, p. 97–113. (extended, more understandable version as ESI preprint No 722, see
www.esi.ac.at).
11.
go back to reference A. Čap, J. Slovák, Parabolic Geometries I, Background and General Theory, Providence, RI, USA: American Mathematical Society, 2009. 628 pp. Mathematical Surveys and Monographs, 154. A. Čap, J. Slovák,
Parabolic Geometries I, Background and General Theory, Providence, RI, USA: American Mathematical Society, 2009. 628 pp. Mathematical Surveys and Monographs, 154.
12.
go back to reference S. Curry, R. Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv:1412.7559v2, 74pp. S. Curry, R. Gover,
An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv:1412.7559v2, 74pp.
13.
go back to reference M.G. Eastwood, J. Slovák Semiholonomic Verma modules, Journal of Algebra, 1997, vol. 197, No 2, p. 424–448. M.G. Eastwood, J. Slovák
Semiholonomic Verma modules, Journal of Algebra, 1997, vol. 197, No 2, p. 424–448.
14.
go back to reference A.R. Gover, J. Slovák, Invariant local twistor calculus for quaternionic structures and related geometries, Journal of Geometry and Physics, Amsterdam: Elsevier Science, 1999, vol. 32, No 1, p. 14–56. MATH A.R. Gover, J. Slovák,
Invariant local twistor calculus for quaternionic structures and related geometries, Journal of Geometry and Physics, Amsterdam: Elsevier Science, 1999, vol. 32, No 1, p. 14–56.
MATH
15.
go back to reference M. Hammerl, P. Somberg, V. Souček, J. Šilhan, Invariant prolongation of overdetermined PDEs in projective, conformal, and Grassmannian geometry, Ann. Global Anal. Geom. 42 (2012), no. 1, 121–145. MathSciNetCrossRef M. Hammerl, P. Somberg, V. Souček, J. Šilhan,
Invariant prolongation of overdetermined PDEs in projective, conformal, and Grassmannian geometry, Ann. Global Anal. Geom. 42 (2012), no. 1, 121–145.
MathSciNetCrossRef
16.
go back to reference M. Hammerl, P. Somberg, V. Souček, J. Šilhan, On a new normalization for tractor covariant derivatives, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1859–1883. MathSciNetCrossRef M. Hammerl, P. Somberg, V. Souček, J. Šilhan,
On a new normalization for tractor covariant derivatives, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1859–1883.
MathSciNetCrossRef
17.
go back to reference I. Kolář, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry, Berlin-Heidelberg-New York: Springer-Verlag, 1993. 434 pp. CrossRef I. Kolář, P.W. Michor, J. Slovák,
Natural Operations in Differential Geometry, Berlin-Heidelberg-New York: Springer-Verlag, 1993. 434 pp.
CrossRef
18.
go back to reference Bertrand Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961) 329–387. MathSciNetCrossRef Bertrand Kostant,
Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961) 329–387.
MathSciNetCrossRef
19.
go back to reference J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. of Algebra 49 (1977), 496–511. MathSciNetCrossRef J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. of Algebra 49 (1977), 496–511.
MathSciNetCrossRef
20.
go back to reference J. Slovák, Natural operators on conformal manifolds, Research Lecture Notes, University of Vienna, 1992, 138pp., ( www.math.muni.cz/~slovak/Papers/habil.pdf) MATH J. Slovák,
Natural operators on conformal manifolds, Research Lecture Notes, University of Vienna, 1992, 138pp., (
www.math.muni.cz/~slovak/Papers/habil.pdf)
MATH
21.
go back to reference J. Slovák, Parabolic Geometries, Research Lecture Notes, Adelaide, 1997, 70pp., ( www.math.muni.cz/~slovak/Papers/examples.pdf) J. Slovák,
Parabolic Geometries, Research Lecture Notes, Adelaide, 1997, 70pp., (
www.math.muni.cz/~slovak/Papers/examples.pdf)
22.
go back to reference T.Y. Thomas, On conformal geometry. Proc. N.A.S. 12 (1926), 352–359. T.Y. Thomas,
On conformal geometry. Proc. N.A.S. 12 (1926), 352–359.
23.
go back to reference V. Wünsch, On Conformally Invariant Differential Operators, Mathematische Nachrichten, 129 (1986), 269–281. MathSciNetCrossRef V. Wünsch,
On Conformally Invariant Differential Operators, Mathematische Nachrichten, 129 (1986), 269–281.
MathSciNetCrossRef
24.
go back to reference R. Zierau, Representations in Dolbeault Cohomology, in Representation Theory of Lie Groups edited by Jeffrey Adams, David Vogan, IAS/Park City Mathematics Series, American Math. Soc., vol. 8 (2015), 89–146. R. Zierau, Representations in Dolbeault Cohomology, in Representation Theory of Lie Groups edited by Jeffrey Adams, David Vogan, IAS/Park City Mathematics Series, American Math. Soc., vol. 8 (2015), 89–146.
- Title
- Notes on Tractor Calculi
- DOI
- https://doi.org/10.1007/978-3-030-63253-3_2
- Authors:
-
Jan Slovák
Radek Suchánek
- Publisher
- Springer International Publishing
- Sequence number
- 2
- Chapter number
- Chapter 2