Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-07-2017 | Original Article | Issue 4/2017

Chinese Journal of Mechanical Engineering 4/2017

Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

Journal:
Chinese Journal of Mechanical Engineering > Issue 4/2017
Authors:
Jin-Tao Liang, Sheng-Dun Zhao, Yong-Yi Li, Mu-Zhi Zhu
Important notes
Supported by National Natural Science Foundation of China (Grant No. 51335009), and Major National Science and Technology Project of China (Grant No. 2011ZX04001-011).

Abstract

The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

Please log in to get access to this content

Literature
About this article

Other articles of this Issue 4/2017

Chinese Journal of Mechanical Engineering 4/2017 Go to the issue

Premium Partners

    Image Credits