Skip to main content
Top

2024 | OriginalPaper | Chapter

Novel Bounds for Generalized of Logarithmic and Identric Means

Authors : Abeer Abu Snainah, Aliaa Burqan, Wasim Audeh

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, new types of upper and lower bounds for generalized of logarithmic and identric means are constructed based on novel relations between scalar means and hyperbolic functions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kittaneh, F., Manasrah, Y.: Improved young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361(1), 262–269 (2010)MathSciNetCrossRef Kittaneh, F., Manasrah, Y.: Improved young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361(1), 262–269 (2010)MathSciNetCrossRef
3.
go back to reference Kittaneh, F., Manasrah, Y.: Reverse Young and Heinz inequalities for matrices. Linear Multilinear Algebra 59(9), 1031–1037 (2011)MathSciNetCrossRef Kittaneh, F., Manasrah, Y.: Reverse Young and Heinz inequalities for matrices. Linear Multilinear Algebra 59(9), 1031–1037 (2011)MathSciNetCrossRef
4.
go back to reference Izmirli, I.M.: An elementary proof of the mean inequalities. Adv. Pure Math. 3(3), 331–334 (2013)CrossRef Izmirli, I.M.: An elementary proof of the mean inequalities. Adv. Pure Math. 3(3), 331–334 (2013)CrossRef
5.
go back to reference Alsaafin, F., Burqan, A.: New ordering relations for the Heinz means via hyperbolic functions. J. Math. Inequal. 16(1), 363–370 (2022)MathSciNetCrossRef Alsaafin, F., Burqan, A.: New ordering relations for the Heinz means via hyperbolic functions. J. Math. Inequal. 16(1), 363–370 (2022)MathSciNetCrossRef
6.
go back to reference Bhatia, R.: Interpolating the arithmetic–geometric mean inequality and its operator version. Linear Algebra Appl. 413(2–3), 355–363 (2006)MathSciNetCrossRef Bhatia, R.: Interpolating the arithmetic–geometric mean inequality and its operator version. Linear Algebra Appl. 413(2–3), 355–363 (2006)MathSciNetCrossRef
7.
go back to reference Burqan, A.: Comparisons of Heinz operator means with different parameters. Malaysian J. Sci. 38(1), 33–42 (2019)CrossRef Burqan, A.: Comparisons of Heinz operator means with different parameters. Malaysian J. Sci. 38(1), 33–42 (2019)CrossRef
8.
go back to reference Pal, R., Singh, M., Moslehian, M.S., Aujla, J.S.: A new class of operator monotone functions via operator means. Linear Multilinear Algebra 64(12), 2463–2473 (2016)MathSciNetCrossRef Pal, R., Singh, M., Moslehian, M.S., Aujla, J.S.: A new class of operator monotone functions via operator means. Linear Multilinear Algebra 64(12), 2463–2473 (2016)MathSciNetCrossRef
9.
10.
go back to reference Shi, G.: Generalization of Heinz operator inequalities via hyperbolic functions. J. Math. Inequal. 13, 715–724 (2019)MathSciNetCrossRef Shi, G.: Generalization of Heinz operator inequalities via hyperbolic functions. J. Math. Inequal. 13, 715–724 (2019)MathSciNetCrossRef
11.
12.
go back to reference Zou, L.: Matrix versions of the classical Pólya inequality. ScienceAsia 39, 204–207 (2013)CrossRef Zou, L.: Matrix versions of the classical Pólya inequality. ScienceAsia 39, 204–207 (2013)CrossRef
13.
go back to reference Sándor, J., Trif, T.: Some new inequalities for means of two arguments. Int. J. Math. Math. Sci. 25(8), 525–532 (2001)MathSciNetCrossRef Sándor, J., Trif, T.: Some new inequalities for means of two arguments. Int. J. Math. Math. Sci. 25(8), 525–532 (2001)MathSciNetCrossRef
Metadata
Title
Novel Bounds for Generalized of Logarithmic and Identric Means
Authors
Abeer Abu Snainah
Aliaa Burqan
Wasim Audeh
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_28

Premium Partner