Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Nanoparticle Research 11/2022

01-11-2022 | Research paper

Novel insights into acute/chronic genotoxic impact of exposure to tungsten oxide nanoparticles on Drosophila melanogaster

Authors: Fatma Turna Demir, Esref Demir

Published in: Journal of Nanoparticle Research | Issue 11/2022

Login to get access
share
SHARE

Abstract

Tungsten oxide nanoparticles (WO3 NPs) have now been employed by various products including electronics, smart screens, gas-biosensors, water purifiers, disinfectants, and biomedical applications. Despite this wide-ranging adoption, little research has investigated their potential endpoint biomarkers in different in vivo models. We therefore propose the use of Drosophila melanogaster as a testing model in assessing genotoxic risks of exposure to WO3 NPs. Our study examined toxicity, phenotypic alterations, locomotor behavior (climbing assay), intracellular oxidative stress (ROS), DNA damage (Comet assay), and somatic recombination (wing spot assay) in Drosophila melanogaster after exposure to WO3 NPs (43.71 ± 1.59 nm) and microparticulated (MPs) of WO3. Drosophila larvae were exposed to the test materials via ingestion at doses ranging between 1 and 10 mM, and two greatest doses of NPs (5 and 10 mM) were found to cause mutagenic/recombinogenic effects, while the MPs caused no effects. Wing-spot assay detected genotoxic activity of NPs mostly through somatic recombination, and Comet assay showed DNA damage after exposure to NPs at certain doses (1, 2.5, 5, and 10 mM). Other observations included ROS generation in hemocytes, phenotypic alterations in the mouths and wings of adult flies, and impaired locomotor behavior. This is the first research to report genotoxic evidence on the impact of WO3 exposure in Drosophila larvae, highlighting the significance of this model organism in exploring the potential biological impact of nanoparticles and MPs of WO3. The results of our in vivo testing should make a vital contribution to the existing database on the genotoxicity of WO3 NPs.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Hasan S (2015) A review on nanoparticles: their synthesis and types biosynthesis: mechanism. Res J Recent Sci 4:9–11 Hasan S (2015) A review on nanoparticles: their synthesis and types biosynthesis: mechanism. Res J Recent Sci 4:9–11
2.
go back to reference Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137 Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137
3.
go back to reference Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22 Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22
4.
go back to reference McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127 McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127
5.
go back to reference Alaraby M, Demir E, Domenech J, Velázquez A, Hernández A, Marcos R (2020) In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles using Drosophila melanogaster. Environ Sci Nano 7:610–622 Alaraby M, Demir E, Domenech J, Velázquez A, Hernández A, Marcos R (2020) In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles using Drosophila melanogaster. Environ Sci Nano 7:610–622
6.
go back to reference Demir E (2021) Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J Toxicol Environ Health Part A 84:649–660 Demir E (2021) Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J Toxicol Environ Health Part A 84:649–660
7.
go back to reference Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH (2015) Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:396–403 Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH (2015) Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:396–403
8.
go back to reference Chinde S, Grover P (2017) Toxicological assessment of nano and micron-sized tungsten oxide after 28 days repeated oral administration to Wistar rats. Mutat Res Genet Toxicol Environ Mutagen 819:1–13 Chinde S, Grover P (2017) Toxicological assessment of nano and micron-sized tungsten oxide after 28 days repeated oral administration to Wistar rats. Mutat Res Genet Toxicol Environ Mutagen 819:1–13
9.
go back to reference Erik L, Wolf-Dieter S (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Kluwer Academic, USA Erik L, Wolf-Dieter S (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Kluwer Academic, USA
10.
go back to reference Zhou G, Hou Y, Liu L, Liu H, Liu C, Liu J, Qiao H, Liu W, Fan Y, Shen S, Rong L (2012) Preparation and characterization of NiW-nHA composite catalyst for hydrocracking. Nanoscale 4:7698–7703 Zhou G, Hou Y, Liu L, Liu H, Liu C, Liu J, Qiao H, Liu W, Fan Y, Shen S, Rong L (2012) Preparation and characterization of NiW-nHA composite catalyst for hydrocracking. Nanoscale 4:7698–7703
11.
go back to reference Cong S, Geng F, Zhao Z (2016) Tungsten oxide materials for optoelectronic applications. Adv Mater 28:10518–10528 Cong S, Geng F, Zhao Z (2016) Tungsten oxide materials for optoelectronic applications. Adv Mater 28:10518–10528
12.
go back to reference Granqvist CG (2014) Electrochromics for smart windows: oxide based thin films and devices. Thin Solid Films 564:1–38 Granqvist CG (2014) Electrochromics for smart windows: oxide based thin films and devices. Thin Solid Films 564:1–38
13.
go back to reference Hu L, Hu P, Chen Y, Lin Z, Qiu C (2018) Synthesis and gas-sensing property of highly self-assembled tungsten oxide nanosheets. Front Chem 6:452 Hu L, Hu P, Chen Y, Lin Z, Qiu C (2018) Synthesis and gas-sensing property of highly self-assembled tungsten oxide nanosheets. Front Chem 6:452
14.
go back to reference Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z (2012) Ultrathin, single-crystal wo 3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO 2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377 Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z (2012) Ultrathin, single-crystal wo 3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO 2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377
15.
go back to reference Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo MH (2009) Ag/AgBr/WO3·H2O: visible-light photocatalyst for bacteria destruction. Inorg Chem 48:10697–10702 Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo MH (2009) Ag/AgBr/WO3·H2O: visible-light photocatalyst for bacteria destruction. Inorg Chem 48:10697–10702
16.
go back to reference Ahmed S, Hassan IAI, Roy H, Marken F (2013) Photoelectrochemical transients for chlorine/hypochlorite formation at “Roll-On” nano-WO 3 film electrodes. J Phys Chem C 117:7005–7012 Ahmed S, Hassan IAI, Roy H, Marken F (2013) Photoelectrochemical transients for chlorine/hypochlorite formation at “Roll-On” nano-WO 3 film electrodes. J Phys Chem C 117:7005–7012
17.
go back to reference Hasegawa G, Shimonaka M, Ishihara Y (2012) Differential genotoxicity of chemical properties and particle size of rare metal and metal oxide nanoparticles. J Appl Toxicol 32:72–80 Hasegawa G, Shimonaka M, Ishihara Y (2012) Differential genotoxicity of chemical properties and particle size of rare metal and metal oxide nanoparticles. J Appl Toxicol 32:72–80
18.
go back to reference Turkez H, Sonmez E, Turkez O, Mokhtar YI, Stefano AD, Turgut G (2014) The risk evaluation of tungsten oxide nanoparticles in cultured rat liver cells for its safe applications in nanotechnology. Braz Arch Biol Technol 57:532–541 Turkez H, Sonmez E, Turkez O, Mokhtar YI, Stefano AD, Turgut G (2014) The risk evaluation of tungsten oxide nanoparticles in cultured rat liver cells for its safe applications in nanotechnology. Braz Arch Biol Technol 57:532–541
19.
go back to reference Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmae M, Kahru A (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 5:1914–1929 Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmae M, Kahru A (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 5:1914–1929
20.
go back to reference Chinde S, Dumala N, Rahman MF, Kamal SSK, Kumari SI, Mahboob M, Grover P (2017) Toxicological assessment of tungsten oxide nanoparticles in rats after acute oral exposure. Environ Sci Pollut Res 24:13576–13593 Chinde S, Dumala N, Rahman MF, Kamal SSK, Kumari SI, Mahboob M, Grover P (2017) Toxicological assessment of tungsten oxide nanoparticles in rats after acute oral exposure. Environ Sci Pollut Res 24:13576–13593
21.
go back to reference Hassanvand A, Zare MH, Shams A, Nickfarjam A, Shabani M, Rahavi H (2019) Investigation of the effect of radiosensitization of tungsten oxide nanoparticles on AGS cell line of human stomach cancer in megavoltage photons radiation. J Nanostructures 9:563–578 Hassanvand A, Zare MH, Shams A, Nickfarjam A, Shabani M, Rahavi H (2019) Investigation of the effect of radiosensitization of tungsten oxide nanoparticles on AGS cell line of human stomach cancer in megavoltage photons radiation. J Nanostructures 9:563–578
22.
go back to reference Akbaba BG, Turkez H, Sonmez E, Akbaba U, Aydın E, Tatar A, Turgut G, Cerig S (2016) In vitro genotoxicity evaluation of tungsten (VI) oxide nanopowder using human lymphocytes. Biomed Res 27:229–234 Akbaba BG, Turkez H, Sonmez E, Akbaba U, Aydın E, Tatar A, Turgut G, Cerig S (2016) In vitro genotoxicity evaluation of tungsten (VI) oxide nanopowder using human lymphocytes. Biomed Res 27:229–234
23.
go back to reference Turkez H, Cakmak B, Celik K (2013) Evaluation of the potential in vivo genotoxicity of tungsten (VI) oxide nanopowder for human health. Key Eng Mater 543:89–92 Turkez H, Cakmak B, Celik K (2013) Evaluation of the potential in vivo genotoxicity of tungsten (VI) oxide nanopowder for human health. Key Eng Mater 543:89–92
24.
go back to reference Prajapati MV, Adebolu OO, Morrow BM, Cerreta JM (2017) Evaluation of pulmonary response to inhaled tungsten (iv) oxide nanoparticles in golden syrian hamsters. Exper Biol Med 242:29–44 Prajapati MV, Adebolu OO, Morrow BM, Cerreta JM (2017) Evaluation of pulmonary response to inhaled tungsten (iv) oxide nanoparticles in golden syrian hamsters. Exper Biol Med 242:29–44
25.
go back to reference Areecheewakul S, Adamcakova-Dodd A, Givens BE, Steines BR, Wang Y, Meyerholz DK, Parizek NJ, Altmaier R, Haque E, O’Shausghnessy PT, Salem AK, Thorne PS (2020) Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NanoImpact 18:100214 Areecheewakul S, Adamcakova-Dodd A, Givens BE, Steines BR, Wang Y, Meyerholz DK, Parizek NJ, Altmaier R, Haque E, O’Shausghnessy PT, Salem AK, Thorne PS (2020) Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NanoImpact 18:100214
26.
go back to reference Mao L, Zheng L, You H, Ullah MW, Cheng H, Guo Q, Li R (2021) A comparison of hepatotoxicity induced by different lengths of tungsten trioxide nanorods and the protective effects of melatonin in BALB/c mice. Environ Sci Pollut Res 28:40793–40807 Mao L, Zheng L, You H, Ullah MW, Cheng H, Guo Q, Li R (2021) A comparison of hepatotoxicity induced by different lengths of tungsten trioxide nanorods and the protective effects of melatonin in BALB/c mice. Environ Sci Pollut Res 28:40793–40807
27.
go back to reference Contreras EQ, Cho M, Zhu H, Puppala HL, Escalera G, Zhong W, Colvin VL (2012) Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ Sci Technol 47:1148–1154 Contreras EQ, Cho M, Zhu H, Puppala HL, Escalera G, Zhong W, Colvin VL (2012) Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ Sci Technol 47:1148–1154
28.
go back to reference Hunt PR, Marquis BJ, Tyner KM, Conklin S, Olejnik N, Nelson BC, Sprando RL (2013) Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol 33:1131–1142 Hunt PR, Marquis BJ, Tyner KM, Conklin S, Olejnik N, Nelson BC, Sprando RL (2013) Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol 33:1131–1142
29.
go back to reference Chatterjee N, Eom HJ, Choi J (2014) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–133 Chatterjee N, Eom HJ, Choi J (2014) Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–133
30.
go back to reference Chatterjee N, Yang J, Kim HM (2014) Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J Toxicol Environ Health Part A 77:1399–1408 Chatterjee N, Yang J, Kim HM (2014) Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J Toxicol Environ Health Part A 77:1399–1408
31.
go back to reference Pappus SA, Mishra M (2018) A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. Adv Exp Med Biol 1048:311–322 Pappus SA, Mishra M (2018) A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. Adv Exp Med Biol 1048:311–322
32.
go back to reference Gao M, Zhang Z, Lv M, Song W, Lv Y (2018) Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol Environ Saf 148:261–268 Gao M, Zhang Z, Lv M, Song W, Lv Y (2018) Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol Environ Saf 148:261–268
33.
go back to reference Shariati F, Poordeljoo T, Zanjanchi P (2020) The acute toxicity of SiO 2 and Fe 3O 4 nano-particles on Daphnia magna. SILICON 12:2941–2946 Shariati F, Poordeljoo T, Zanjanchi P (2020) The acute toxicity of SiO 2 and Fe 3O 4 nano-particles on Daphnia magna. SILICON 12:2941–2946
34.
go back to reference Pappus SA, Ekka B, Sahu S, Sabat D, Dash P, Mishra M (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanoparticle Res 19(4):136 Pappus SA, Ekka B, Sahu S, Sabat D, Dash P, Mishra M (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanoparticle Res 19(4):136
35.
go back to reference Anand AS, Gahlot U, Prasad DN, Amitabh Kohli E (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13:977–989 Anand AS, Gahlot U, Prasad DN, Amitabh Kohli E (2019) Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 13:977–989
36.
go back to reference Demir E (2020) An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. J Toxicol Environ Health Part A 83:456–469 Demir E (2020) An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. J Toxicol Environ Health Part A 83:456–469
37.
go back to reference Mendoza RP, Brown JM (2019) Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr Opin Toxicol 13:74–80 Mendoza RP, Brown JM (2019) Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr Opin Toxicol 13:74–80
38.
go back to reference Dan P, Sundararajan V, Ganeshkumar H, Gnanabarathi B, Subramanian AK, Venkatasubu GD, Ichihara SS (2019) Evaluation of hydroxyapatite nanoparticles-induced in vivo toxicity in Drosophila melanogaster. Appl Surf Sci 484:568–577 Dan P, Sundararajan V, Ganeshkumar H, Gnanabarathi B, Subramanian AK, Venkatasubu GD, Ichihara SS (2019) Evaluation of hydroxyapatite nanoparticles-induced in vivo toxicity in Drosophila melanogaster. Appl Surf Sci 484:568–577
39.
go back to reference Mishra M, Panda M (2021) Reactive oxygen species: The root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 55:919–935 Mishra M, Panda M (2021) Reactive oxygen species: The root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 55:919–935
40.
go back to reference Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 88:1114–1125 Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 88:1114–1125
41.
go back to reference Demir E, Turna Demir F, Marcos R (2022) Drosophila as a suitable in vivo model in the safety assessment of nanomaterials. Adv Exp Med Biol 1357:275–301 Demir E, Turna Demir F, Marcos R (2022) Drosophila as a suitable in vivo model in the safety assessment of nanomaterials. Adv Exp Med Biol 1357:275–301
42.
go back to reference Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) From the cover: Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci 103:1394–1399 Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) From the cover: Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci 103:1394–1399
43.
go back to reference Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23 Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23
44.
go back to reference Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13:172–183 Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13:172–183
45.
go back to reference Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel MP, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H (2007) A conditional pan neuronal drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci Res 27:2483–2492 Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel MP, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H (2007) A conditional pan neuronal drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci Res 27:2483–2492
46.
go back to reference Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171 Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171
47.
go back to reference Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insightsFrom Drosophila melanogaster models. Trends Biochem Sci 35:228–235 Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insightsFrom Drosophila melanogaster models. Trends Biochem Sci 35:228–235
48.
go back to reference Ng CT, Ong CN, Yu LE, Bay BH, Baeg GH (2019) Toxicity study of zinc oxide nanoparticles in cell culture and in Drosophila melanogaster. J Vis Exp 151:e59510 Ng CT, Ong CN, Yu LE, Bay BH, Baeg GH (2019) Toxicity study of zinc oxide nanoparticles in cell culture and in Drosophila melanogaster. J Vis Exp 151:e59510
49.
go back to reference Flecknell P (2002) Replacement, reduction and refinement. Altex 19:73–78 Flecknell P (2002) Replacement, reduction and refinement. Altex 19:73–78
50.
go back to reference Jennings BH (2011) Drosophila-a versatile model in biology & medicine. Mater Today 14:190–195 Jennings BH (2011) Drosophila-a versatile model in biology & medicine. Mater Today 14:190–195
51.
go back to reference Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83 Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83
52.
go back to reference Rand MD, Vorojeikina D, Peppriell A, Gunderson J, Prince LM (2019) Drosophotoxicology: elucidating kinetic and dynamic pathways of methylmercury toxicity in a Drosophila model. Front Genet 10:666 Rand MD, Vorojeikina D, Peppriell A, Gunderson J, Prince LM (2019) Drosophotoxicology: elucidating kinetic and dynamic pathways of methylmercury toxicity in a Drosophila model. Front Genet 10:666
53.
go back to reference Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36 Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36
54.
go back to reference Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M, Branca F, Castegnaro JJ, Descotes J, Hemminiki K, Lindsay D, Schilter B (2000) Biomarkers as predictive tools in toxicity testing. ATLA 28:119–131 Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M, Branca F, Castegnaro JJ, Descotes J, Hemminiki K, Lindsay D, Schilter B (2000) Biomarkers as predictive tools in toxicity testing. ATLA 28:119–131
55.
go back to reference Rajak P, Dutta M, Roy S (2015) Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of acephate. Interdiscip Toxicol 8:84–88 Rajak P, Dutta M, Roy S (2015) Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of acephate. Interdiscip Toxicol 8:84–88
56.
go back to reference Festing MFW, Baumans V, Combes DR, Hadler M, Hendriksen FM, Howard BR, Lovell DP, Moore GJ, Overend P, Wilson MS (1998) Reducing the use of laboratory animals in biomedical research: problems and possible solutions. Altern Lab Anim 26:283–301 Festing MFW, Baumans V, Combes DR, Hadler M, Hendriksen FM, Howard BR, Lovell DP, Moore GJ, Overend P, Wilson MS (1998) Reducing the use of laboratory animals in biomedical research: problems and possible solutions. Altern Lab Anim 26:283–301
57.
go back to reference Demir E, Marcos R (2018) Antigenotoxic potential of boron nitride nanotubes. Nanotoxicology 12:868–884 Demir E, Marcos R (2018) Antigenotoxic potential of boron nitride nanotubes. Nanotoxicology 12:868–884
58.
go back to reference Demir E (2022) Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response. J Appl Toxicol 42:450–474 Demir E (2022) Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response. J Appl Toxicol 42:450–474
59.
go back to reference Demir E, Turna F, Aksakal S, Kaya B, Marcos R (2014) Genotoxicity of different sweeteners in Drosophila. Fresenius Environ Bull 23:3426–3432 Demir E, Turna F, Aksakal S, Kaya B, Marcos R (2014) Genotoxicity of different sweeteners in Drosophila. Fresenius Environ Bull 23:3426–3432
60.
go back to reference Demir E, Marcos R (2017) Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae. Food Chem Toxicol 105:1–7 Demir E, Marcos R (2017) Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae. Food Chem Toxicol 105:1–7
62.
go back to reference Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675
63.
go back to reference Pendleton RG, Parvez F, Sayed M, Hillman R (2002) Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 300:91–96 Pendleton RG, Parvez F, Sayed M, Hillman R (2002) Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 300:91–96
64.
go back to reference Martinez VG, Javadi CS, Ngo E, Ngo L, Lagow RD, Zhang B (2007) Age-related changes in climbing behavior and neural circuit physiology in Drosophila. Dev Neurobiol 67:778–791 Martinez VG, Javadi CS, Ngo E, Ngo L, Lagow RD, Zhang B (2007) Age-related changes in climbing behavior and neural circuit physiology in Drosophila. Dev Neurobiol 67:778–791
65.
go back to reference Anand AS, Prasad DN, Singh SB, Kohli E (2017) Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J Hazard Mater 327:180–186 Anand AS, Prasad DN, Singh SB, Kohli E (2017) Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J Hazard Mater 327:180–186
66.
go back to reference Priyadarsini S, Sahoo SK, Sahu S, Mukherjee S, Hota G, Mishra M (2019) Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ Sci Pollut Res 26:19560–19574 Priyadarsini S, Sahoo SK, Sahu S, Mukherjee S, Hota G, Mishra M (2019) Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ Sci Pollut Res 26:19560–19574
67.
go back to reference Mishra M, Sabat D, Ekka B, Sahu S, Unnikannan P, Dash P (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanoparticle Res 19:282 Mishra M, Sabat D, Ekka B, Sahu S, Unnikannan P, Dash P (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanoparticle Res 19:282
68.
go back to reference Sood K, Kaur J, Singh H, Arya SK, Khatri M (2019) Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep 6:768–781 Sood K, Kaur J, Singh H, Arya SK, Khatri M (2019) Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep 6:768–781
69.
go back to reference Graf U, Würgler FE, Katz AJ, Frei H, Juan H, Hall CB, Kale PG (1984) Somatic mutation and recombination test in Drosophila melanogaster. Environ Mol Mutagen 6:153–188 Graf U, Würgler FE, Katz AJ, Frei H, Juan H, Hall CB, Kale PG (1984) Somatic mutation and recombination test in Drosophila melanogaster. Environ Mol Mutagen 6:153–188
70.
go back to reference Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, San Diego, CA Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, San Diego, CA
71.
go back to reference Turna F, Aksakal S, Demir E, Kaya B (2014) Antigenotoxic effects of Resveratrol in somatic cells of Drosophila melanogaster. Fresenius Environ Bull 23:2116–2125 Turna F, Aksakal S, Demir E, Kaya B (2014) Antigenotoxic effects of Resveratrol in somatic cells of Drosophila melanogaster. Fresenius Environ Bull 23:2116–2125
72.
go back to reference Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7:335–350 Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7:335–350
73.
go back to reference Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191 Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191
74.
go back to reference Ghosh M, Manivannan J, Sinha S, Chakraborty A, Mallick SK, Bandyopadhyay M, Mukherjee A (2012) in vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–69 Ghosh M, Manivannan J, Sinha S, Chakraborty A, Mallick SK, Bandyopadhyay M, Mukherjee A (2012) in vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–69
75.
go back to reference Tice RR, Andrews PW, Singh N (1990) The single cell gel assay. A sensitive technique for evaluating intercellular differences in DNA damage and repair. B.M. Sutherland, A.D. Wordhead (Eds.), DNA damage and repair in human tissues, Plenum, New York, NY (1990), pp. 291–302 Tice RR, Andrews PW, Singh N (1990) The single cell gel assay. A sensitive technique for evaluating intercellular differences in DNA damage and repair. B.M. Sutherland, A.D. Wordhead (Eds.), DNA damage and repair in human tissues, Plenum, New York, NY (1990), pp. 291–302
76.
go back to reference Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A (2004) Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline comet assay. Mutagenesis 19:85–90 Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A (2004) Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline comet assay. Mutagenesis 19:85–90
77.
go back to reference Siddique HR, Chowdhuri DK, Saxena DK, Dhawan A (2005) Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis 20:285–290 Siddique HR, Chowdhuri DK, Saxena DK, Dhawan A (2005) Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis 20:285–290
78.
go back to reference Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A (2003) A cross-platform public domain pc image-analysis program for the comet assay. Mutat Res-Genet Toxicol Environ Mutagen 534:15–20 Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A (2003) A cross-platform public domain pc image-analysis program for the comet assay. Mutat Res-Genet Toxicol Environ Mutagen 534:15–20
79.
go back to reference Turna Demir F, Yavuz M (2020) Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities. Environ Pollut 256:113378 Turna Demir F, Yavuz M (2020) Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities. Environ Pollut 256:113378
80.
go back to reference Kastenbaum MA, Bowman KO (1970) Tables for determining the statistical significance of mutation frequencies. Mutat Res 9:527–549 Kastenbaum MA, Bowman KO (1970) Tables for determining the statistical significance of mutation frequencies. Mutat Res 9:527–549
81.
go back to reference Frei H, Würgler FE (1995) Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila. Mutat Res 334:247–225 Frei H, Würgler FE (1995) Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila. Mutat Res 334:247–225
82.
go back to reference Frei H, Würgler FE (1988) Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive results. Mutat Res 203:297–308 Frei H, Würgler FE (1988) Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive results. Mutat Res 203:297–308
83.
go back to reference Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57 Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57
84.
go back to reference Demir E, Vales G, Kaya B, Creus A, Marcos R (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–424 Demir E, Vales G, Kaya B, Creus A, Marcos R (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–424
85.
go back to reference Turna Demir F (2022) In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. J Toxicol Environ Health Part A 85:414–430 Turna Demir F (2022) In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. J Toxicol Environ Health Part A 85:414–430
86.
go back to reference Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size. Toxicol Lett 188:112–118 Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size. Toxicol Lett 188:112–118
87.
go back to reference Arnold M, Badireddy A, Wiesner M, Di Giulio R, Meyer J (2013) Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol 65:224–233 Arnold M, Badireddy A, Wiesner M, Di Giulio R, Meyer J (2013) Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol 65:224–233
88.
go back to reference Vales G, Demir E, Kaya B, Creus A, Marcos R (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468 Vales G, Demir E, Kaya B, Creus A, Marcos R (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–468
89.
go back to reference Demir E, Aksakal S, Turna F, Kaya B, Marcos R (2015) In vivo genotoxic effects of four different nano-sizes forms of silica nanoparticles in Drosophila melanogaster. J Hazard Mater 283:260–266 Demir E, Aksakal S, Turna F, Kaya B, Marcos R (2015) In vivo genotoxic effects of four different nano-sizes forms of silica nanoparticles in Drosophila melanogaster. J Hazard Mater 283:260–266
90.
go back to reference AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290 AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290
91.
go back to reference Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914 Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914
92.
go back to reference Klien K, Godnić-Cvar J (2012) Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol 63:133–145 Klien K, Godnić-Cvar J (2012) Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol 63:133–145
93.
go back to reference Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278 Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278
94.
go back to reference Demir E, Turna F, Burgucu D, Kılıç Z, Burunkaya E, Kesmez Ö, Kaya B (2013) Genotoxicity of different nano-sizes and ions of silica nanoparticles. Fresenius Environ Bull 22:2901–2909 Demir E, Turna F, Burgucu D, Kılıç Z, Burunkaya E, Kesmez Ö, Kaya B (2013) Genotoxicity of different nano-sizes and ions of silica nanoparticles. Fresenius Environ Bull 22:2901–2909
95.
go back to reference Domenech J, Hernández A, Demir E, Marcos R, Cortés C (2020) Interactions of graphene oxide and graphene nanoplatelets with the in vitro caco-2/ht29 model of intestinal barrier. Sci Rep 10:1–15 Domenech J, Hernández A, Demir E, Marcos R, Cortés C (2020) Interactions of graphene oxide and graphene nanoplatelets with the in vitro caco-2/ht29 model of intestinal barrier. Sci Rep 10:1–15
96.
go back to reference Carmona ER, Guecheva TN, Creus A, Marcos R (2011) Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ Mol Mutagen 52:165–169 Carmona ER, Guecheva TN, Creus A, Marcos R (2011) Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ Mol Mutagen 52:165–169
97.
go back to reference Gaivao I, Sierra LM (2014) Drosophila comet assay: insights, uses, and future perspectives. Front Genet 5:304 Gaivao I, Sierra LM (2014) Drosophila comet assay: insights, uses, and future perspectives. Front Genet 5:304
98.
go back to reference Alaraby M, Annangi B, Marcos R, Hernández A (2016) Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Environ Health B Crit Rev 19:65–104 Alaraby M, Annangi B, Marcos R, Hernández A (2016) Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Environ Health B Crit Rev 19:65–104
99.
go back to reference Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259 Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259
100.
go back to reference Strawn ET, Cohen CA, Rzigalinski BA (2006) Cerium oxide nanoparticles increase lifespan and protect against free radical-mediated toxicity. FASEB J 20:A1356–A1356 Strawn ET, Cohen CA, Rzigalinski BA (2006) Cerium oxide nanoparticles increase lifespan and protect against free radical-mediated toxicity. FASEB J 20:A1356–A1356
101.
go back to reference Baeg E, Sooklert K, Sereemaspun A (2018) Copper oxide nanoparticles cause a dose-dependent toxicity via inducing reactive oxygen species in Drosophila. Nanomaterials 8:824 Baeg E, Sooklert K, Sereemaspun A (2018) Copper oxide nanoparticles cause a dose-dependent toxicity via inducing reactive oxygen species in Drosophila. Nanomaterials 8:824
102.
go back to reference Paithankar JG, Kushalan S, Nijil S, Hegde S, Kini S, Sharma A (2022) Systematic toxicity assessment of cdte quantum dots in Drosophila melanogaster. Chemosphere 295:133836 Paithankar JG, Kushalan S, Nijil S, Hegde S, Kini S, Sharma A (2022) Systematic toxicity assessment of cdte quantum dots in Drosophila melanogaster. Chemosphere 295:133836
103.
go back to reference Cui Y, Gong X, Duan Y, Li N, Hu R, Liu H, Hong F (2010) Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater 183:874–880 Cui Y, Gong X, Duan Y, Li N, Hu R, Liu H, Hong F (2010) Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater 183:874–880
104.
go back to reference Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc Oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed 12:1621 Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc Oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed 12:1621
Metadata
Title
Novel insights into acute/chronic genotoxic impact of exposure to tungsten oxide nanoparticles on Drosophila melanogaster
Authors
Fatma Turna Demir
Esref Demir
Publication date
01-11-2022
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2022
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05593-2

Other articles of this Issue 11/2022

Journal of Nanoparticle Research 11/2022 Go to the issue

Premium Partners