Skip to main content
Top

2024 | OriginalPaper | Chapter

Novel Monte Carlo Algorithm for Linear Algebraic Systems

Authors : Venelin Todorov, Slavi Georgiev, Ivan Dimov

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel Monte Carlo algorithm has been introduced and analyzed for solving linear algebraic equations. This hybrid algorithm is comparable to the ”Walk on Equations”; Monte Carlo approach developed by Ivan Dimov, Sylvain Maire, and Jean Michel Sellier. A comparison with the Gauss-Siedel method has been made for matrices up to a size of 10000. The algorithms’ performance is enhanced by choosing appropriate values for the relaxation parameters, resulting in a significant reduction in computation time and lower relative errors for a given number of iterations. A theorem proving the algorithms convergence has been presented. By balancing the iteration matrix, the original algorithm can be optimized. In addition, a sequential Monte Carlo method developed by John Halton based on an iterative application of the control variate method has been employed. The most notable numerical experiment involves a large system derived from a finite element approximation of a problem that describes a beam structure in constructive mechanics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Curtiss, J.H.: Monte Carlo methods for the iteration of linear operators. J. Math Phys., vol 32(4). (1954), pp. 209–232. Curtiss, J.H.: Monte Carlo methods for the iteration of linear operators. J. Math Phys., vol 32(4). (1954), pp. 209–232.
2.
go back to reference Curtiss, J.H.: A Theoretical Comparison of the Efficiencies of two classical methods and a Monte Carlo method for Computing one component of the solution of a set of Linear Algebraic Equations. Proc. Symp. MC Meth., John Wiley and Sons, 1956, pp. 191–233. Curtiss, J.H.: A Theoretical Comparison of the Efficiencies of two classical methods and a Monte Carlo method for Computing one component of the solution of a set of Linear Algebraic Equations. Proc. Symp. MC Meth., John Wiley and Sons, 1956, pp. 191–233.
3.
go back to reference Dimov, I.T.: Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 291p (2008). Dimov, I.T.: Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 291p (2008).
4.
go back to reference Dimov, I.T., Maire, S., Sellier, J.M.: A New Walk on Equations Monte Carlo Method for Linear Algebraic Problems, Applied Mathematical Modelling 39 (15), 4494–4510 (2015). Dimov, I.T., Maire, S., Sellier, J.M.: A New Walk on Equations Monte Carlo Method for Linear Algebraic Problems, Applied Mathematical Modelling 39 (15), 4494–4510 (2015).
5.
go back to reference Halton, J.: Sequential Monte Carlo, Proceedings of the Cambridge Philosophical Society, Vol. 58 (1962) pp. 57–78. Halton, J.: Sequential Monte Carlo, Proceedings of the Cambridge Philosophical Society, Vol. 58 (1962) pp. 57–78.
6.
go back to reference Halton, J.: Sequential Monte Carlo. University of Wisconsin, Madison, Mathematics Research Center Technical Summary Report No. 816 (1967) 38 pp. Halton, J.: Sequential Monte Carlo. University of Wisconsin, Madison, Mathematics Research Center Technical Summary Report No. 816 (1967) 38 pp.
7.
go back to reference Halton, J. and Zeidman, E. A.: Monte Carlo integration with sequential stratification. University of Wisconsin, Madison, Comp. Scien. Departm. Tech. Report No. 61 (1969) 31 pp. Halton, J. and Zeidman, E. A.: Monte Carlo integration with sequential stratification. University of Wisconsin, Madison, Comp. Scien. Departm. Tech. Report No. 61 (1969) 31 pp.
8.
go back to reference Halton, J.: Sequential Monte Carlo for linear systems - a practical summary, Monte Carlo Methods & Applications, 14 (2008) pp. 1–27. Halton, J.: Sequential Monte Carlo for linear systems - a practical summary, Monte Carlo Methods & Applications, 14 (2008) pp. 1–27.
9.
go back to reference Maire, S.: Reducing variance using iterated control variates, Journal of Statistical Computation and Simulation, Vol. 73(1), pp. 1–29, 2003. Maire, S.: Reducing variance using iterated control variates, Journal of Statistical Computation and Simulation, Vol. 73(1), pp. 1–29, 2003.
10.
go back to reference I.M. Sobol, Monte Carlo Numerical Methods, Nauka, Moscow (1973). I.M. Sobol, Monte Carlo Numerical Methods, Nauka, Moscow (1973).
Metadata
Title
Novel Monte Carlo Algorithm for Linear Algebraic Systems
Authors
Venelin Todorov
Slavi Georgiev
Ivan Dimov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_39

Premium Partner