Skip to main content
Top

2018 | OriginalPaper | Chapter

Novel MRI Contrast from Magnetotactic Bacteria to Evaluate In Vivo Stem Cell Engraftment

Authors : Ji-Hye Jung, Yuko Tada, Phillip C. Yang

Published in: Biological, Physical and Technical Basics of Cell Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although human induced pluripotent stem cells (iPSCs) and their derivatives have great potential for the treatment of heart failure. The therapeutic benefit is limited by translational challenges of stem cells such as cell engraftment. Thus, a robust in vivo imaging technology is indispensable to advance the clinical implementation of stem cell therapy. While no available imaging technology meets the requirement for in vivo stem cell tracking, MRI is a highly promising tool due to its high spatial resolution, temporal resolution, and tissue contrast; yet, this modality lacks sensitivity. Superparamagnetic iron oxide particles (SPIONs) addresses this critical imaging issue and have been used as an MRI contrast agent for stem cell tracking. However, their critical limitation is the inability to evaluate cell viability as SPIONs remain in the tissue long after the death of transplanted cells. To address this shortcoming of SPIONs, the novel magneto-endosymbiont-based (MEs) contrast agent was developed (Magnelle®, Bell Biosystems, Inc., South SF, CA). The MEs utilize the magnetosome biosynthesized by magnetotactic bacteria (MTB), a specific intracellular structure containing inorganic magnetic iron crystals (magnetite or greigite). Having superparamagnetic property like SPIONs, MEs can be detected on T2* weighted imaging. MEs have high safety profile and do not interfere with the functions of transfected cells. Unlike SPIONs, the antiginecity of the MEs are readily recognized and removed from macrophages quickly after the death of labeled cells, eliminating signals from dead cells. In the previous study from our group, iPSC derived cardiomyocytes were labeled with MEs and detected successfully on MRI after transplantation into the heart. In vivo ME signals corresponded with luciferase-based bioluminescence imaging (BLI) of the transplanted cell viability. In conclusion, ME is a novel MRI contrast agent for in vivo cellular tracking that allows accurate longitudinal visualization of the engrafted cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRef Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRef
2.
go back to reference Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRef Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRef
3.
go back to reference Tanaka, A., Yuasa, S., Node, K., & Fukuda, K. (2015). Cardiovascular disease modeling using patient-specific induced pluripotent stem cells. International Journal of Molecular Sciences, 16, 18894–18922.CrossRef Tanaka, A., Yuasa, S., Node, K., & Fukuda, K. (2015). Cardiovascular disease modeling using patient-specific induced pluripotent stem cells. International Journal of Molecular Sciences, 16, 18894–18922.CrossRef
4.
go back to reference Maehr, R., et al. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Science U. S. A., 106, 15768–15773.CrossRef Maehr, R., et al. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Science U. S. A., 106, 15768–15773.CrossRef
5.
go back to reference Richard, J.-P., & Maragakis, N. J. (2015). Induced pluripotent stem cells from ALS patients for disease modeling. Brain Research, 1607, 15–25.CrossRef Richard, J.-P., & Maragakis, N. J. (2015). Induced pluripotent stem cells from ALS patients for disease modeling. Brain Research, 1607, 15–25.CrossRef
6.
go back to reference Payne, N. L., et al. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32, 212–228.CrossRef Payne, N. L., et al. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32, 212–228.CrossRef
7.
go back to reference Chidgey, A. P., Layton, D., Trounson, A., & Boyd, R. L. (2008). Tolerance strategies for stem-cell-based therapies. Nature, 453, 330–337.CrossRef Chidgey, A. P., Layton, D., Trounson, A., & Boyd, R. L. (2008). Tolerance strategies for stem-cell-based therapies. Nature, 453, 330–337.CrossRef
8.
go back to reference Jung, J.-H., Fu, X., & Yang, P. C. (2017). Exosomes generated from iPSC-derivatives: New direction for stem cell therapy in human heart diseases. Circulation Research, 120, 407–417.CrossRef Jung, J.-H., Fu, X., & Yang, P. C. (2017). Exosomes generated from iPSC-derivatives: New direction for stem cell therapy in human heart diseases. Circulation Research, 120, 407–417.CrossRef
9.
go back to reference Hynes, B., et al. (2013). Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. European Heart Journal, 34, 782–789.CrossRef Hynes, B., et al. (2013). Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. European Heart Journal, 34, 782–789.CrossRef
10.
go back to reference Valina, C., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.CrossRef Valina, C., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.CrossRef
11.
go back to reference Rota, M., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.CrossRef Rota, M., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.CrossRef
12.
go back to reference Hare, J. M., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.CrossRef Hare, J. M., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.CrossRef
13.
go back to reference Kehat, I., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.CrossRef Kehat, I., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.CrossRef
14.
go back to reference Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, activin/nodal and BMP signaling. Development, 135, 2969–2979.CrossRef Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, activin/nodal and BMP signaling. Development, 135, 2969–2979.CrossRef
15.
go back to reference Chong, J. J. H., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510, 273–277.CrossRef Chong, J. J. H., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510, 273–277.CrossRef
16.
go back to reference Mauritz, C., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRef Mauritz, C., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRef
17.
go back to reference Zhang, J., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.CrossRef Zhang, J., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.CrossRef
18.
go back to reference Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.CrossRef Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.CrossRef
19.
go back to reference Frangioni, J. V., & Hajjar, R. J. (2004). In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation, 110, 3378–3383.CrossRef Frangioni, J. V., & Hajjar, R. J. (2004). In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation, 110, 3378–3383.CrossRef
20.
go back to reference Li, Z., et al. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells (Dayton, Ohio), 26, 864–873.CrossRef Li, Z., et al. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells (Dayton, Ohio), 26, 864–873.CrossRef
21.
go back to reference Parashurama, N., et al. (2016). Multimodality molecular imaging of cardiac cell transplantation: Part II. In vivo imaging of bone marrow stromal cells in swine with PET/CT and MR imaging. Radiology, 280, 826–836.CrossRef Parashurama, N., et al. (2016). Multimodality molecular imaging of cardiac cell transplantation: Part II. In vivo imaging of bone marrow stromal cells in swine with PET/CT and MR imaging. Radiology, 280, 826–836.CrossRef
22.
go back to reference Parashurama, N., et al. (2016). Multimodality molecular imaging of cardiac cell transplantation: Part I. Reporter gene design, characterization, and optical in vivo imaging of bone marrow stromal cells after myocardial infarction. Radiology, 280, 815–825.CrossRef Parashurama, N., et al. (2016). Multimodality molecular imaging of cardiac cell transplantation: Part I. Reporter gene design, characterization, and optical in vivo imaging of bone marrow stromal cells after myocardial infarction. Radiology, 280, 815–825.CrossRef
23.
go back to reference von der Haar, K., Lavrentieva, A., Stahl, F., Scheper, T., & Blume, C. (2015). Lost signature: Progress and failures in in vivo tracking of implanted stem cells. Applied Microbiology and Biotechnology, 99, 9907–9922.CrossRef von der Haar, K., Lavrentieva, A., Stahl, F., Scheper, T., & Blume, C. (2015). Lost signature: Progress and failures in in vivo tracking of implanted stem cells. Applied Microbiology and Biotechnology, 99, 9907–9922.CrossRef
24.
go back to reference Lewin, M., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18, 410–414.CrossRef Lewin, M., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18, 410–414.CrossRef
25.
go back to reference Jasmin, et al. (2011). Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanobiotechnology, 9(4).CrossRef Jasmin, et al. (2011). Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanobiotechnology, 9(4).CrossRef
26.
go back to reference Cunningham, C. H., et al. (2005). Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magnetic Resonance in Medicine, 53, 999–1005.CrossRef Cunningham, C. H., et al. (2005). Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magnetic Resonance in Medicine, 53, 999–1005.CrossRef
27.
go back to reference Arai, T., et al. (2006). Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magnetic Resonance in Medicine, 55, 203–209.CrossRef Arai, T., et al. (2006). Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magnetic Resonance in Medicine, 55, 203–209.CrossRef
28.
go back to reference Dash, R., et al. (2011). Dual manganese-enhanced and delayed gadolinium-enhanced MRI detects myocardial border zone injury in a pig ischemia-reperfusion model. Circulation: Cardiovascular Imaging, 4, 574–582. Dash, R., et al. (2011). Dual manganese-enhanced and delayed gadolinium-enhanced MRI detects myocardial border zone injury in a pig ischemia-reperfusion model. Circulation: Cardiovascular Imaging, 4, 574–582.
29.
go back to reference Hung, T.-C., et al. (2008). Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circulation: Cardiovascular Imaging, 1, 6–13. Hung, T.-C., et al. (2008). Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circulation: Cardiovascular Imaging, 1, 6–13.
30.
go back to reference Nishida, K., et al. (2006). Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. NeuroReport, 17, 1269–1272.CrossRef Nishida, K., et al. (2006). Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. NeuroReport, 17, 1269–1272.CrossRef
31.
go back to reference Vandergriff, A. C., et al. (2014). Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials, 35, 8528–8539.CrossRef Vandergriff, A. C., et al. (2014). Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials, 35, 8528–8539.CrossRef
32.
go back to reference Uchida, M., et al. (2008). A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magnetic Resonance in Medicine, 60, 1073–1081.CrossRef Uchida, M., et al. (2008). A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magnetic Resonance in Medicine, 60, 1073–1081.CrossRef
33.
go back to reference Nitz, W. R., & Reimer, P. (1999). Contrast mechanisms in MR imaging. European Radiology, 9, 1032–1046.CrossRef Nitz, W. R., & Reimer, P. (1999). Contrast mechanisms in MR imaging. European Radiology, 9, 1032–1046.CrossRef
34.
go back to reference Bos, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233, 781–789.CrossRef Bos, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233, 781–789.CrossRef
35.
go back to reference Santoyo Salazar, J., et al. (2011). Magnetic iron oxide nanoparticles in 10–40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chemistry of Materials, 23, 1379–1386.CrossRef Santoyo Salazar, J., et al. (2011). Magnetic iron oxide nanoparticles in 10–40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chemistry of Materials, 23, 1379–1386.CrossRef
36.
go back to reference Moraes, L., et al. (2012). Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Research, 9, 143–155.CrossRef Moraes, L., et al. (2012). Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Research, 9, 143–155.CrossRef
37.
go back to reference Bull, E., et al. (2014). Stem cell tracking using iron oxide nanoparticles. International Journal of Nanomedicine, 9, 1641–1653. Bull, E., et al. (2014). Stem cell tracking using iron oxide nanoparticles. International Journal of Nanomedicine, 9, 1641–1653.
38.
go back to reference Hillaireau, H., & Couvreur, P. (2009). Nanocarriers’ entry into the cell: Relevance to drug delivery. Cellular and Molecular Life Sciences CMLS, 66, 2873–2896.CrossRef Hillaireau, H., & Couvreur, P. (2009). Nanocarriers’ entry into the cell: Relevance to drug delivery. Cellular and Molecular Life Sciences CMLS, 66, 2873–2896.CrossRef
39.
go back to reference Cores, J., Caranasos, T. G., & Cheng, K. (2015). Magnetically targeted stem cell delivery for regenerative medicine. Journal of Functional Biomaterials, 6, 526–546.CrossRef Cores, J., Caranasos, T. G., & Cheng, K. (2015). Magnetically targeted stem cell delivery for regenerative medicine. Journal of Functional Biomaterials, 6, 526–546.CrossRef
40.
go back to reference Suzuki, Y., et al. (2007). In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magnetic Resonance in Medicine, 57, 1173–1179.CrossRef Suzuki, Y., et al. (2007). In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magnetic Resonance in Medicine, 57, 1173–1179.CrossRef
41.
go back to reference Qiu, B., et al. (2010). Magnetosonoporation: instant magnetic labeling of stem cells. Magnetic Resonance in Medicine, 63, 1437–1441.CrossRef Qiu, B., et al. (2010). Magnetosonoporation: instant magnetic labeling of stem cells. Magnetic Resonance in Medicine, 63, 1437–1441.CrossRef
42.
go back to reference Walczak, P., Kedziorek, D. A., Gilad, A. A., Lin, S., & Bulte, J. W. M. (2005). Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine, 54, 769–774.CrossRef Walczak, P., Kedziorek, D. A., Gilad, A. A., Lin, S., & Bulte, J. W. M. (2005). Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine, 54, 769–774.CrossRef
43.
go back to reference Khurana, A., et al. (2013). Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology, 269, 186–197.CrossRef Khurana, A., et al. (2013). Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology, 269, 186–197.CrossRef
44.
go back to reference Liu, L., et al. (2016). A new method for preparing mesenchymal stem cells and labeling with ferumoxytol for cell tracking by MRI. Scientific Reports, 6, 26271.CrossRef Liu, L., et al. (2016). A new method for preparing mesenchymal stem cells and labeling with ferumoxytol for cell tracking by MRI. Scientific Reports, 6, 26271.CrossRef
45.
go back to reference Chen, J., et al. (2013). Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Applied Materials & Interfaces, 5, 5976–5985.CrossRef Chen, J., et al. (2013). Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Applied Materials & Interfaces, 5, 5976–5985.CrossRef
46.
go back to reference Chung, J., et al. (2011). In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magnetic Resonance in Medicine, 66, 1374–1381.CrossRef Chung, J., et al. (2011). In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magnetic Resonance in Medicine, 66, 1374–1381.CrossRef
47.
go back to reference Singh, N., Jenkins, G. J. S., Asadi, R., & Doak, S. H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 1.CrossRef Singh, N., Jenkins, G. J. S., Asadi, R., & Doak, S. H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 1.CrossRef
49.
go back to reference Chen, I. Y., et al. (2009). Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Molecular Imaging and Biology (MIB) Official Publication of the Academy of Molecular Imaging, 11, 178–187.CrossRef Chen, I. Y., et al. (2009). Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Molecular Imaging and Biology (MIB) Official Publication of the Academy of Molecular Imaging, 11, 178–187.CrossRef
50.
go back to reference Suzuki, Y., et al. (2008). In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magnetic Resonance in Medicine, 60, 1269–1275.CrossRef Suzuki, Y., et al. (2008). In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magnetic Resonance in Medicine, 60, 1269–1275.CrossRef
51.
go back to reference Terrovitis, J., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117, 1555–1562.CrossRef Terrovitis, J., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117, 1555–1562.CrossRef
52.
go back to reference Kim, J. A., Åberg, C., Salvati, A., & Dawson, K. A. (2011). Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotechnology, 7, 62–68.CrossRef Kim, J. A., Åberg, C., Salvati, A., & Dawson, K. A. (2011). Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotechnology, 7, 62–68.CrossRef
53.
go back to reference Hendry, S. L., et al. (2008). Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells. The Journal of Thoracic and Cardiovascular Surgery, 136, 1028–1037.e1.CrossRef Hendry, S. L., et al. (2008). Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells. The Journal of Thoracic and Cardiovascular Surgery, 136, 1028–1037.e1.CrossRef
54.
go back to reference Kim, P. J., et al. (2015). Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circulation Research, 116, e40–e50.CrossRef Kim, P. J., et al. (2015). Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circulation Research, 116, e40–e50.CrossRef
55.
56.
go back to reference Yan, L., et al. (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167, 507–519.CrossRef Yan, L., et al. (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167, 507–519.CrossRef
57.
go back to reference Schüler, D., & Frankel, R. B. (1999). Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 52, 464–473.CrossRef Schüler, D., & Frankel, R. B. (1999). Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 52, 464–473.CrossRef
58.
go back to reference Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., & Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 5, 977–999.CrossRef Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., & Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 5, 977–999.CrossRef
59.
go back to reference Araujo, A. C. V., Abreu, F., Silva, K. T., Bazylinski, D. A., & Lins, U. (2015). Magnetotactic bacteria as potential sources of bioproducts. Marine Drugs, 13, 389–430.CrossRef Araujo, A. C. V., Abreu, F., Silva, K. T., Bazylinski, D. A., & Lins, U. (2015). Magnetotactic bacteria as potential sources of bioproducts. Marine Drugs, 13, 389–430.CrossRef
60.
go back to reference Mahmoudi, M., et al. (2016). Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes. Scientific Reports, 6. Mahmoudi, M., et al. (2016). Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes. Scientific Reports, 6.
61.
go back to reference Komeili, A. (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiology Reviews, 36, 232–255.CrossRef Komeili, A. (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiology Reviews, 36, 232–255.CrossRef
Metadata
Title
Novel MRI Contrast from Magnetotactic Bacteria to Evaluate In Vivo Stem Cell Engraftment
Authors
Ji-Hye Jung
Yuko Tada
Phillip C. Yang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7904-7_16