Skip to main content
Top

2011 | OriginalPaper | Chapter

Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes

Authors : Vijay K. Anuganti, Aldrik H. Velders

Published in: Carbon Nanotubes for Biomedical Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is one of the most versatile and powerful analytical tools developed in the last century and have been proven to be a suitable means for the elucidation of structural properties as well as physico-chemical characteristics in chemistry and material sciences. In the first part of this chapter a review is given on the investigation of different types of carbon nanotube (CNT) structures and properties by solution-state NMR, solid state NMR and high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. (Nuclear) Magnetic resonance imaging (MRI) is one of the most powerful noninvasive diagnostic techniques used in clinical medicine for in vivo assessment of anatomy and biological functions. CNTs are unique materials that can be used as a platform for the synthesis of hybrid construct molecules capable of enabling multiple biomedical applications in vitro and in vivo as molecular transporters for drug delivery, and potential new therapeutics. In the second part of this chapter the potential use of CNTs as contrast-enhancing agent for MRI, in vitro, ex vivo and in vivo, is reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oberlin, A., Endo, M., Koyama, T.: High resolution electron microscope observations of grap hitized carbon fibers. Carbon 14(2), 133–135 (1976)CrossRef Oberlin, A., Endo, M., Koyama, T.: High resolution electron microscope observations of grap hitized carbon fibers. Carbon 14(2), 133–135 (1976)CrossRef
2.
go back to reference Kroto, H.W., et al.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef Kroto, H.W., et al.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef
3.
go back to reference Iijima, S.: Helical microtubules of carbon nanotubes. Nature 354(6348), 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of carbon nanotubes. Nature 354(6348), 56–58 (1991)CrossRef
4.
go back to reference Bethune, D.S., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)CrossRef Bethune, D.S., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)CrossRef
5.
go back to reference Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)CrossRef Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)CrossRef
6.
go back to reference Chen, X., et al.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006)CrossRef Chen, X., et al.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006)CrossRef
7.
go back to reference Tycko, R., et al.: Molecular orientational dynamics in solid C70: investigation by one- and two-dimensional magic angle spinning nuclear magnetic resonance. J. Chem. Phys. 99(10), 7554–7564 (1993)CrossRef Tycko, R., et al.: Molecular orientational dynamics in solid C70: investigation by one- and two-dimensional magic angle spinning nuclear magnetic resonance. J. Chem. Phys. 99(10), 7554–7564 (1993)CrossRef
8.
go back to reference Tang, X.P., et al.: Electronic structures of single-walled carbon nanotubes determined by NMR. Science 288(5465), 492–494 (2000)CrossRef Tang, X.P., et al.: Electronic structures of single-walled carbon nanotubes determined by NMR. Science 288(5465), 492–494 (2000)CrossRef
9.
go back to reference Chen, Q., et al.: Identification of endohedral water in single-walled carbon nanotubes by 1H NMR. Nano Lett. 8(7), 1902–1905 (2008)CrossRef Chen, Q., et al.: Identification of endohedral water in single-walled carbon nanotubes by 1H NMR. Nano Lett. 8(7), 1902–1905 (2008)CrossRef
10.
go back to reference Kitaygorodskiy, A., et al.: NMR detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 127(20), 7517–7520 (2005)CrossRef Kitaygorodskiy, A., et al.: NMR detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 127(20), 7517–7520 (2005)CrossRef
11.
go back to reference Yu, I.S., Lee, J., Lee, S.: NMR of hydrogen adsorbed on carbon nanotubes. Phys. B Condensed Matter 329, 421–422 (2003)CrossRef Yu, I.S., Lee, J., Lee, S.: NMR of hydrogen adsorbed on carbon nanotubes. Phys. B Condensed Matter 329, 421–422 (2003)CrossRef
12.
go back to reference Mao, S.H., Kleinhammes, A., Wu, Y.: NMR study of water adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 421(4–6), 513–517 (2006)CrossRef Mao, S.H., Kleinhammes, A., Wu, Y.: NMR study of water adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 421(4–6), 513–517 (2006)CrossRef
13.
go back to reference Nelson, D.J., Rhoads, H., Brammer, C.: Characterizing covalently sidewall-functionalized SWNTs. J. Phys. Chem. C 111(48), 17872–17878 (2007)CrossRef Nelson, D.J., Rhoads, H., Brammer, C.: Characterizing covalently sidewall-functionalized SWNTs. J. Phys. Chem. C 111(48), 17872–17878 (2007)CrossRef
14.
go back to reference Holzinger, M., et al.: Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 125(28), 8566–8580 (2003)CrossRef Holzinger, M., et al.: Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 125(28), 8566–8580 (2003)CrossRef
15.
go back to reference Chen, J., et al.: Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124(31), 9034–9035 (2002)CrossRef Chen, J., et al.: Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124(31), 9034–9035 (2002)CrossRef
16.
go back to reference Ghosh, S., Ramanathan, K.V., Sood, A.K.: Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. 65(5), 678–684 (2004)CrossRef Ghosh, S., Ramanathan, K.V., Sood, A.K.: Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. 65(5), 678–684 (2004)CrossRef
17.
go back to reference Tasis, D., et al.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)CrossRef Tasis, D., et al.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)CrossRef
18.
go back to reference Pantarotto, D., et al.: Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125(20), 6160–6164 (2003)CrossRef Pantarotto, D., et al.: Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125(20), 6160–6164 (2003)CrossRef
19.
go back to reference Marega, R., et al.: Diffusion-ordered NMR spectroscopy in the structural characterization of functionalized carbon nanotubes. J. Am. Chem. Soc. 131(25), 9086–9093 (2009)CrossRef Marega, R., et al.: Diffusion-ordered NMR spectroscopy in the structural characterization of functionalized carbon nanotubes. J. Am. Chem. Soc. 131(25), 9086–9093 (2009)CrossRef
20.
go back to reference Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRef Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRef
21.
go back to reference Loening, N.M., Keeler, J., Morris, G.A.: One-dimensional DOSY. J. Magn. Reson. 153(1), 103–112 (2001)CrossRef Loening, N.M., Keeler, J., Morris, G.A.: One-dimensional DOSY. J. Magn. Reson. 153(1), 103–112 (2001)CrossRef
22.
go back to reference JohnsonJr, C.S.: Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34(3–4), 203–256 (1999)CrossRef JohnsonJr, C.S.: Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34(3–4), 203–256 (1999)CrossRef
23.
go back to reference Ju, S.Y., et al.: NMR study of organization of diacetylenic amine on single-wall carbon nanotubes. In: Abstracts of papers of the American Chemical Society, vol 229, p. 119-POLY (2005) Ju, S.Y., et al.: NMR study of organization of diacetylenic amine on single-wall carbon nanotubes. In: Abstracts of papers of the American Chemical Society, vol 229, p. 119-POLY (2005)
24.
go back to reference Goze Bac, C., et al.: 13C NMR investigation of carbon nanotubes and derivatives. Curr. Appl. Phys. 1(2–3), 149–155 (2001)CrossRef Goze Bac, C., et al.: 13C NMR investigation of carbon nanotubes and derivatives. Curr. Appl. Phys. 1(2–3), 149–155 (2001)CrossRef
25.
go back to reference Goze-Bac, C., et al.: Magnetic interactions in carbon nanostructures. Carbon 40(10), 1825–1842 (2002)CrossRef Goze-Bac, C., et al.: Magnetic interactions in carbon nanostructures. Carbon 40(10), 1825–1842 (2002)CrossRef
26.
go back to reference Peng, H., et al.: Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125(49), 15174–15182 (2003)CrossRef Peng, H., et al.: Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125(49), 15174–15182 (2003)CrossRef
27.
go back to reference Mehring, M.: Principles of High Resolution NMR in Solids. Springer, Berlin (1983)CrossRef Mehring, M.: Principles of High Resolution NMR in Solids. Springer, Berlin (1983)CrossRef
28.
go back to reference Schmidt-Rohr, K.a.S., H.W.: Multidimensional NMR and Polymers. Academic Press, New York (1994) Schmidt-Rohr, K.a.S., H.W.: Multidimensional NMR and Polymers. Academic Press, New York (1994)
29.
go back to reference Steven, P.B., Lyndon, E.: Solid-state NMR. In: Gauglitz, G. (ed.) Handbook of Spectroscopy, pp. 269–326 (2005) Steven, P.B., Lyndon, E.: Solid-state NMR. In: Gauglitz, G. (ed.) Handbook of Spectroscopy, pp. 269–326 (2005)
30.
go back to reference Hayashi, S., et al.: C-13 NMR studies of C-13-enriched single-wall carbon nanotubes synthesized by catalytic decomposition of methane. Carbon 41(15), 3047–3056 (2003)CrossRef Hayashi, S., et al.: C-13 NMR studies of C-13-enriched single-wall carbon nanotubes synthesized by catalytic decomposition of methane. Carbon 41(15), 3047–3056 (2003)CrossRef
31.
go back to reference He, H.: 13C solid-state MAS NMR studies of the low temperature phase transition in fullerene C60. PCCP 2(2), 2651–2654 (2000)CrossRef He, H.: 13C solid-state MAS NMR studies of the low temperature phase transition in fullerene C60. PCCP 2(2), 2651–2654 (2000)CrossRef
32.
go back to reference Latil, S., et al.: C-13 NMR chemical shift of single-wall carbon nanotubes. Phys. Rev. Lett. 86(14), 3160–3163 (2001)CrossRef Latil, S., et al.: C-13 NMR chemical shift of single-wall carbon nanotubes. Phys. Rev. Lett. 86(14), 3160–3163 (2001)CrossRef
33.
go back to reference Perez-Cabero, M., et al.: C-13 MAS–NMR study of carbon nanotubes grown by catalytic decomposition of acetylene on Fe–silica catalysts. Carbon 43(12), 2631–2634 (2005)CrossRef Perez-Cabero, M., et al.: C-13 MAS–NMR study of carbon nanotubes grown by catalytic decomposition of acetylene on Fe–silica catalysts. Carbon 43(12), 2631–2634 (2005)CrossRef
34.
go back to reference Alemany, L.B., et al.: Solid-state NMR analysis of fluorinated single-walled carbon nanotubes: assessing the extent of fluorination. Chem. Mater. 19(4), 735–744 (2007)CrossRef Alemany, L.B., et al.: Solid-state NMR analysis of fluorinated single-walled carbon nanotubes: assessing the extent of fluorination. Chem. Mater. 19(4), 735–744 (2007)CrossRef
35.
go back to reference Singer, P.M., et al.: NMR study of spin excitations in carbon nanotubes. Phys. Status Solid B Basic Solid State Phys. 243(13), 3111–3116 (2006)CrossRef Singer, P.M., et al.: NMR study of spin excitations in carbon nanotubes. Phys. Status Solid B Basic Solid State Phys. 243(13), 3111–3116 (2006)CrossRef
36.
go back to reference Pennington, C.H., Stenger, V.A.: Nuclear magnetic resonance of C60 and fulleride superconductors. Rev. Modern Phys. 68(3), 855 (1996)CrossRef Pennington, C.H., Stenger, V.A.: Nuclear magnetic resonance of C60 and fulleride superconductors. Rev. Modern Phys. 68(3), 855 (1996)CrossRef
37.
go back to reference Knight, W.D.: Solid State Physics, vol. 2, p. 93. Academic Press, New York (1956) Knight, W.D.: Solid State Physics, vol. 2, p. 93. Academic Press, New York (1956)
38.
go back to reference Mintmire, J.W., White, C.T.: First-principles band structures of armchair nanotubes. Appl. Phys. A Mater. Sci. Process. 67(1), 65–69 (1998)CrossRef Mintmire, J.W., White, C.T.: First-principles band structures of armchair nanotubes. Appl. Phys. A Mater. Sci. Process. 67(1), 65–69 (1998)CrossRef
39.
go back to reference Cynthia, J.J., Jameson, A.K., Sheila, M.C.: Temperature and density dependence of [sup 129]Xe chemical shift in xenon gas. J. Chem. Phys. 59(8), 4540–4546 (1973)CrossRef Cynthia, J.J., Jameson, A.K., Sheila, M.C.: Temperature and density dependence of [sup 129]Xe chemical shift in xenon gas. J. Chem. Phys. 59(8), 4540–4546 (1973)CrossRef
40.
go back to reference Kneller, J.M., et al.: TEM and laser-polarized 129Xe NMR characterization of oxidatively purified carbon nanotubes. J. Am. Chem. Soc. 122(43), 10591–10597 (2000)CrossRef Kneller, J.M., et al.: TEM and laser-polarized 129Xe NMR characterization of oxidatively purified carbon nanotubes. J. Am. Chem. Soc. 122(43), 10591–10597 (2000)CrossRef
41.
go back to reference Clewett, C.F.M., Pietrass, T.: Xe-129 and Xe-131 NMR of gas adsorption on single- and multi-walled carbon nanotubes. J. Phys. Chem. B 109(38), 17907–17912 (2005)CrossRef Clewett, C.F.M., Pietrass, T.: Xe-129 and Xe-131 NMR of gas adsorption on single- and multi-walled carbon nanotubes. J. Phys. Chem. B 109(38), 17907–17912 (2005)CrossRef
42.
go back to reference Romanenko, K.V., et al.: Xe-129 NMR study of Xe adsorption on multiwall carbon nanotubes. Solid State Nucl. Magn. Reson. 28(2–4), 135–141 (2005)CrossRef Romanenko, K.V., et al.: Xe-129 NMR study of Xe adsorption on multiwall carbon nanotubes. Solid State Nucl. Magn. Reson. 28(2–4), 135–141 (2005)CrossRef
43.
go back to reference Vyalikh, A., et al.: A nanoscaled contactless thermometer for biological systems. Phys. Status Solid. B Basic Solid State Phys. 244(11), 4092–4096 (2007)CrossRef Vyalikh, A., et al.: A nanoscaled contactless thermometer for biological systems. Phys. Status Solid. B Basic Solid State Phys. 244(11), 4092–4096 (2007)CrossRef
44.
go back to reference Dujardin, E., et al.: Interstitial metallic residues in purified single shell carbon nanotubes. Solid State Commun. 114(10), 543–546 (2000)CrossRef Dujardin, E., et al.: Interstitial metallic residues in purified single shell carbon nanotubes. Solid State Commun. 114(10), 543–546 (2000)CrossRef
45.
go back to reference Piotto, M., et al.: Practical aspects of shimming a high resolution magic angle spinning probe. J. Magn. Reson. 173(1), 84–89 (2005)CrossRef Piotto, M., et al.: Practical aspects of shimming a high resolution magic angle spinning probe. J. Magn. Reson. 173(1), 84–89 (2005)CrossRef
46.
go back to reference Sekhaneh, W., et al.: High resolution NMR of water absorbed in single-wall carbon nanotubes. Chem. Phys. Lett. 428(1–3), 143–147 (2006)CrossRef Sekhaneh, W., et al.: High resolution NMR of water absorbed in single-wall carbon nanotubes. Chem. Phys. Lett. 428(1–3), 143–147 (2006)CrossRef
47.
go back to reference Marti, J., Gordillo, M.C.: Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes. J. Chem. Phys. 119(23), 12540–12546 (2003)CrossRef Marti, J., Gordillo, M.C.: Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes. J. Chem. Phys. 119(23), 12540–12546 (2003)CrossRef
48.
go back to reference Kolesnikov, A.I., et al.: Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93(3), 1–035503 (2004)CrossRef Kolesnikov, A.I., et al.: Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93(3), 1–035503 (2004)CrossRef
49.
go back to reference Barnaal, D.E., Lowe, I.J.: Experimental free-induction-decay shapes and theoretical second moments for hydrogen in hexagonal ice. J. Chem. Phys. 46, 4800–4809 (1966)CrossRef Barnaal, D.E., Lowe, I.J.: Experimental free-induction-decay shapes and theoretical second moments for hydrogen in hexagonal ice. J. Chem. Phys. 46, 4800–4809 (1966)CrossRef
50.
go back to reference Gogotsi, Y., et al.: In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett. 79(7), 1021–1023 (2001)CrossRef Gogotsi, Y., et al.: In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett. 79(7), 1021–1023 (2001)CrossRef
51.
go back to reference Caravan, P.: Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc. Chem. Res. 42(7), 851–862 (2009)CrossRef Caravan, P.: Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc. Chem. Res. 42(7), 851–862 (2009)CrossRef
52.
go back to reference Caravan, P.: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35(6), 512–523 (2006)CrossRef Caravan, P.: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35(6), 512–523 (2006)CrossRef
53.
go back to reference Jeff, W.M.B., Dara, L.K.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17(7), 484–499 (2004)CrossRef Jeff, W.M.B., Dara, L.K.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17(7), 484–499 (2004)CrossRef
54.
go back to reference Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394), 190–191 (1973)CrossRef Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394), 190–191 (1973)CrossRef
55.
go back to reference Gabillard, R.: A steady state transient technique in nuclear resonance. Phys. Rev. 85(4), 694 (1952)CrossRef Gabillard, R.: A steady state transient technique in nuclear resonance. Phys. Rev. 85(4), 694 (1952)CrossRef
56.
go back to reference Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171(3976), 1151–1153 (1971)CrossRef Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171(3976), 1151–1153 (1971)CrossRef
57.
go back to reference Hinshaw, W.S., Bottomley, P.A., Holland, G.N.: A demonstration of the resolution of NMR imaging in biological systems. Cell. Mol. Life Sci. 35(9), 1268–1269 (1979)CrossRef Hinshaw, W.S., Bottomley, P.A., Holland, G.N.: A demonstration of the resolution of NMR imaging in biological systems. Cell. Mol. Life Sci. 35(9), 1268–1269 (1979)CrossRef
58.
go back to reference Damadian, R., Goldsmith, M., Minkoff, L.: NMR in cancer: XVI. FONAR image of the live human body. Physiol. Chem. Phys. 9(1), 97–100, 108 (1977) Damadian, R., Goldsmith, M., Minkoff, L.: NMR in cancer: XVI. FONAR image of the live human body. Physiol. Chem. Phys. 9(1), 97–100, 108 (1977)
59.
go back to reference Kumar, A., Welti, D., Ernst, R.R.: NMR Fourier zeugmatography. J. Magn. Reson. 18(1), 69–83 (1975) Kumar, A., Welti, D., Ernst, R.R.: NMR Fourier zeugmatography. J. Magn. Reson. 18(1), 69–83 (1975)
60.
go back to reference Wehrli, F.W.: On the 2003 Nobel Prize in medicine or physiology awarded to Paul C. Lauterbur and Sir Peter Mansfield. Magn. Reson. Med. 51(1), 1–3 (2004)MathSciNetCrossRef Wehrli, F.W.: On the 2003 Nobel Prize in medicine or physiology awarded to Paul C. Lauterbur and Sir Peter Mansfield. Magn. Reson. Med. 51(1), 1–3 (2004)MathSciNetCrossRef
61.
go back to reference Mansfield, P.: Snapshot magnetic resonance imaging (Nobel Lecture). Angew. Chem. Int. Edn. 43(41), 5456–5464 (2004)CrossRef Mansfield, P.: Snapshot magnetic resonance imaging (Nobel Lecture). Angew. Chem. Int. Edn. 43(41), 5456–5464 (2004)CrossRef
62.
go back to reference Watson, A.D., J.K., Jamieson, G.C., Fellmann, J.D., Vogt, N.B.: Use of fullerenes in diagnostic and/or therapeutic agents, USA (1994) Watson, A.D., J.K., Jamieson, G.C., Fellmann, J.D., Vogt, N.B.: Use of fullerenes in diagnostic and/or therapeutic agents, USA (1994)
63.
go back to reference Sitharaman, B., et al.: Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol. Imaging 2(3), 139–146 (2007)CrossRef Sitharaman, B., et al.: Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol. Imaging 2(3), 139–146 (2007)CrossRef
64.
go back to reference Bolskar, R.D., et al.: First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo. Evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125(18), 5471–5478 (2003)CrossRef Bolskar, R.D., et al.: First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo. Evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125(18), 5471–5478 (2003)CrossRef
65.
go back to reference Neumann, W.L., Cacheris, W.P. (eds): Fullerene compositions for magnetic resonance spectroscopy and imaging. US Patent 5,248,498, 1993 Neumann, W.L., Cacheris, W.P. (eds): Fullerene compositions for magnetic resonance spectroscopy and imaging. US Patent 5,248,498, 1993
66.
67.
go back to reference Mackeyev, Y.A., et al.: Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J. Phys. Chem. B 109(12), 5482–5484 (2005)CrossRef Mackeyev, Y.A., et al.: Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J. Phys. Chem. B 109(12), 5482–5484 (2005)CrossRef
68.
go back to reference Suenaga, K., et al.: Element-selective single atom imaging. Science 290(5500), 2280–2282 (2000)CrossRef Suenaga, K., et al.: Element-selective single atom imaging. Science 290(5500), 2280–2282 (2000)CrossRef
69.
go back to reference Sitharaman, B., et al.: Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31, 3915–3917 (2005)CrossRef Sitharaman, B., et al.: Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31, 3915–3917 (2005)CrossRef
70.
go back to reference Hartman, K.B., et al.: Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 8(2), 415–419 (2008)CrossRef Hartman, K.B., et al.: Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 8(2), 415–419 (2008)CrossRef
71.
go back to reference Al Faraj, A., et al.: In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 9(3), 1023–1027 (2009)CrossRef Al Faraj, A., et al.: In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 9(3), 1023–1027 (2009)CrossRef
72.
go back to reference Sosnovik, D.E., Weissleder, R.: Emerging concepts in molecular MRI. Curr. Opin. Biotechnol. 18(1), 4–10 (2007)CrossRef Sosnovik, D.E., Weissleder, R.: Emerging concepts in molecular MRI. Curr. Opin. Biotechnol. 18(1), 4–10 (2007)CrossRef
73.
go back to reference Choi, J.H., et al.: Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7(4), 861–867 (2007)CrossRef Choi, J.H., et al.: Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7(4), 861–867 (2007)CrossRef
74.
go back to reference Richard, C., et al.: Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T 1 and T 2 MRI contrast agents. Nano Lett. 8(1), 232–236 (2008)CrossRef Richard, C., et al.: Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T 1 and T 2 MRI contrast agents. Nano Lett. 8(1), 232–236 (2008)CrossRef
Metadata
Title
Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes
Authors
Vijay K. Anuganti
Aldrik H. Velders
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_7