Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Nucleation and Growth from a Biomineralization Perspective

Authors : Giuseppe Falini, Simona Fermani

Published in: New Perspectives on Mineral Nucleation and Growth

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomineralization processes occur ubiquitously through a heterogeneous nucleation process. This despite the fact that nucleation follows a classical or no classical, two-step, pathway. In addition, in mineralizing organisms, the growth process can also take place through a classical path wherein instead of addition of single ions to the growing crystal nuclei, amorphous nanoparticles that crystallize on the growing crystal nuclei are utilized. After many years of evolution, organisms have established diverse strategies that follow the above principles. The molecular and structural details of those processes are for many aspects still unknown. In this chapter, a few representative cases among the most studied biominerals are presented. The final section is devoted to a summary of selected recent studies on the effect of ocean acidification on the biomineral synthesis and features.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Addadi L, Joester D, Nudelman F et al (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987CrossRef Addadi L, Joester D, Nudelman F et al (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987CrossRef
go back to reference Allison N, Cohen I, Finch AA et al (2014) Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat Commun 5:5741–5748CrossRef Allison N, Cohen I, Finch AA et al (2014) Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat Commun 5:5741–5748CrossRef
go back to reference Baumgartner J, Dey A, Bomans PHH et al (2013) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314CrossRef Baumgartner J, Dey A, Bomans PHH et al (2013) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314CrossRef
go back to reference Beniash E, Addadi L, Weiner S (1999) Cellular control over spicule formation in sea urchin embryos: a structural approach. J Struct Biol 125:50–62CrossRef Beniash E, Addadi L, Weiner S (1999) Cellular control over spicule formation in sea urchin embryos: a structural approach. J Struct Biol 125:50–62CrossRef
go back to reference Cartwright JHE, Checa AG, Gale JD, Gebauer D, Sainz-Díaz CI (2012) Calcium carbonate polyamorphism and its role in biomineralization: how many ACCs are there? Angew Chem Int Ed Engl 51:11960–11970CrossRef Cartwright JHE, Checa AG, Gale JD, Gebauer D, Sainz-Díaz CI (2012) Calcium carbonate polyamorphism and its role in biomineralization: how many ACCs are there? Angew Chem Int Ed Engl 51:11960–11970CrossRef
go back to reference Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, ChichesterCrossRef Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, ChichesterCrossRef
go back to reference Cuif J-P, Dauphin Y, Nehrke G et al (2012) Layered growth and crystallization in calcareous biominerals: impact of structural and chemical evidence on two major concepts in invertebrate biomineralization studies. Minerals 2:11–39CrossRef Cuif J-P, Dauphin Y, Nehrke G et al (2012) Layered growth and crystallization in calcareous biominerals: impact of structural and chemical evidence on two major concepts in invertebrate biomineralization studies. Minerals 2:11–39CrossRef
go back to reference De Yoreo JJ, Dove PM (2004) Shaping crystals with biomolecules. Science 306:1301–1302CrossRef De Yoreo JJ, Dove PM (2004) Shaping crystals with biomolecules. Science 306:1301–1302CrossRef
go back to reference De Yoreo JJ, Vekilov PG (2003) Biomineralization. In: Dove PM, De Yoreo JJ, Weiner S (eds) Reviews in mineralogy and geochemistry, vol 54. The Mineralogical Society of America, Washington, DC, pp 57–94 De Yoreo JJ, Vekilov PG (2003) Biomineralization. In: Dove PM, De Yoreo JJ, Weiner S (eds) Reviews in mineralogy and geochemistry, vol 54. The Mineralogical Society of America, Washington, DC, pp 57–94
go back to reference De Yoreo JJ, Wierzbickib A, Dove PM (2007) New insights into mechanisms of biomolecular control on growth of inorganic crystals. CrystEngComm 9:1144–1152CrossRef De Yoreo JJ, Wierzbickib A, Dove PM (2007) New insights into mechanisms of biomolecular control on growth of inorganic crystals. CrystEngComm 9:1144–1152CrossRef
go back to reference Delgado-López JM, Guagliardi A (2017) Control over nanocrystalline apatite formation: what can the X-ray total scattering approach tell us. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 211–226 Delgado-López JM, Guagliardi A (2017) Control over nanocrystalline apatite formation: what can the X-ray total scattering approach tell us. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 211–226
go back to reference Demichelis R, Raiteri P, Gale JD et al (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 590:1–8 Demichelis R, Raiteri P, Gale JD et al (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 590:1–8
go back to reference Dubois PH, Chen C (1989) Calcification in echinoderms. In: Jangoux MJ, Lawrence JM (eds) Echinoderm studies, vol 3. Balkema, Rotterdam, pp 109–178 Dubois PH, Chen C (1989) Calcification in echinoderms. In: Jangoux MJ, Lawrence JM (eds) Echinoderm studies, vol 3. Balkema, Rotterdam, pp 109–178
go back to reference Falini G, Albeck S, Weiner S et al (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRef Falini G, Albeck S, Weiner S et al (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRef
go back to reference Fitzer SC, Zhu W, Tanner KE et al (2015) Ocean acidification alters the material properties of Mytilus edulis shells. J R Soc Interface 12:20141227 Fitzer SC, Zhu W, Tanner KE et al (2015) Ocean acidification alters the material properties of Mytilus edulis shells. J R Soc Interface 12:20141227
go back to reference Gal A, Weiner S, Addadi L (2015) A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion. CrystEngComm 17:2606–2615CrossRef Gal A, Weiner S, Addadi L (2015) A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion. CrystEngComm 17:2606–2615CrossRef
go back to reference Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822 Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822
go back to reference Gericke A, Qin C, Spevak L et al (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54CrossRef Gericke A, Qin C, Spevak L et al (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54CrossRef
go back to reference Goffredo S, Prada F, Caroselli E et al (2014) Biomineralization control related to population density under ocean acidification. Nat Clim Change 4:593–597CrossRef Goffredo S, Prada F, Caroselli E et al (2014) Biomineralization control related to population density under ocean acidification. Nat Clim Change 4:593–597CrossRef
go back to reference Gordon L, Joester D (2011) Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 469:194–197CrossRef Gordon L, Joester D (2011) Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 469:194–197CrossRef
go back to reference Habraken WJEM, Tao J, Brylka LJ et al (2013) Ion association complexes unite classical and non- classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507–1510CrossRef Habraken WJEM, Tao J, Brylka LJ et al (2013) Ion association complexes unite classical and non- classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507–1510CrossRef
go back to reference Killian CE, Metzler RA, Gong YUT et al (2009) Mechanism of calcite co-orientation in the sea urchin tooth. J Am Chem Soc 131:18404–18409CrossRef Killian CE, Metzler RA, Gong YUT et al (2009) Mechanism of calcite co-orientation in the sea urchin tooth. J Am Chem Soc 131:18404–18409CrossRef
go back to reference Levi Kalisman Y, Falini G, Addadi L et al (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17CrossRef Levi Kalisman Y, Falini G, Addadi L et al (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17CrossRef
go back to reference Liu XY (2004) From solid-fluid interface to nanostructure engineering. In: Liu XY, De Yoreo JJ (eds) Nanoscale structure and assembly at solid–fluid interfaces, vol 1. Springer, London, pp109–175CrossRef Liu XY (2004) From solid-fluid interface to nanostructure engineering. In: Liu XY, De Yoreo JJ (eds) Nanoscale structure and assembly at solid–fluid interfaces, vol 1. Springer, London, pp109–175CrossRef
go back to reference Lowenstam HA, Weiner S (1985) Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science 227:51–53CrossRef Lowenstam HA, Weiner S (1985) Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science 227:51–53CrossRef
go back to reference Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York
go back to reference Lutsko JF (2017) Novel paradigms in nonclassical nucleation theory. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 25–42 Lutsko JF (2017) Novel paradigms in nonclassical nucleation theory. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 25–42
go back to reference Mann S, Archibald DD, Didymus JM et al (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261:1286–1292CrossRef Mann S, Archibald DD, Didymus JM et al (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261:1286–1292CrossRef
go back to reference Nassif N, Pinna N, Gehrke N et al (2005) Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci U S A 102:12653–12655CrossRef Nassif N, Pinna N, Gehrke N et al (2005) Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci U S A 102:12653–12655CrossRef
go back to reference Nudelman F, Gotliv AB, Addadi L et al (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J Struct Biol 153:176–187CrossRef Nudelman F, Gotliv AB, Addadi L et al (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J Struct Biol 153:176–187CrossRef
go back to reference Nudelman F, Pieterse K, George A et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009CrossRef Nudelman F, Pieterse K, George A et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009CrossRef
go back to reference Olson IC, Blonsky AZ, Tamura N et al (2013) Crystal nucleation and near-epitaxial growth in nacre. J Struct Biol 184:454–463CrossRef Olson IC, Blonsky AZ, Tamura N et al (2013) Crystal nucleation and near-epitaxial growth in nacre. J Struct Biol 184:454–463CrossRef
go back to reference Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40:503–529CrossRef Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40:503–529CrossRef
go back to reference Pespeni MH, Sanford E, Gaylord B et al (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci U S A 110:6937–6942CrossRef Pespeni MH, Sanford E, Gaylord B et al (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci U S A 110:6937–6942CrossRef
go back to reference Politi Y, Metzler RA, Abrecht M et al (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366CrossRef Politi Y, Metzler RA, Abrecht M et al (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366CrossRef
go back to reference Politi Y, Batchelor DR, Zaslansky P et al (2010) Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure-function investigation. Chem Mater 22:161–166CrossRef Politi Y, Batchelor DR, Zaslansky P et al (2010) Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure-function investigation. Chem Mater 22:161–166CrossRef
go back to reference Pouget EM, Bomans PHH, Goos JACM et al (2009) The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science 323:1455–1458CrossRef Pouget EM, Bomans PHH, Goos JACM et al (2009) The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science 323:1455–1458CrossRef
go back to reference Price PA, Toroian D, Lim JE (2009) Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. J Biol Chem 284:17092–17101CrossRef Price PA, Toroian D, Lim JE (2009) Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. J Biol Chem 284:17092–17101CrossRef
go back to reference Qiao R, Wierzbicki A, Orme CA et al (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A 101:1811–1815CrossRef Qiao R, Wierzbicki A, Orme CA et al (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A 101:1811–1815CrossRef
go back to reference Qiao L, Feng Q, Lu S (2008) In vitro growth of nacre-like tablet forming: from amorphous calcium carbonate, nanostacks to hexagonal tablets. Cryst Growth Des 8:1509–1514CrossRef Qiao L, Feng Q, Lu S (2008) In vitro growth of nacre-like tablet forming: from amorphous calcium carbonate, nanostacks to hexagonal tablets. Cryst Growth Des 8:1509–1514CrossRef
go back to reference Schäffer TE, Ionescu-Zanetti C, Proksch R et al (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9:1731–1740CrossRef Schäffer TE, Ionescu-Zanetti C, Proksch R et al (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9:1731–1740CrossRef
go back to reference Seto J, Ma YR, Davis SA et al (2012) Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc Natl Acad Sci U S A 109:3699–3704CrossRef Seto J, Ma YR, Davis SA et al (2012) Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc Natl Acad Sci U S A 109:3699–3704CrossRef
go back to reference Stemmer K, Nehrke G, Brey T (2013) Elevated CO2 levels do not affect the shell structure of the bivalve Arctica islandica from the Western Baltic. PLoS One 8:e70106CrossRef Stemmer K, Nehrke G, Brey T (2013) Elevated CO2 levels do not affect the shell structure of the bivalve Arctica islandica from the Western Baltic. PLoS One 8:e70106CrossRef
go back to reference Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J Ultrastruct Res 17:1–13CrossRef Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J Ultrastruct Res 17:1–13CrossRef
go back to reference Weaver JC, Wang Q, Miserez A et al (2010) Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater Today 13:42–52 Weaver JC, Wang Q, Miserez A et al (2010) Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater Today 13:42–52
go back to reference Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702CrossRef Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702CrossRef
go back to reference Weiner S, Lowenstam H (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. Crit Rev Biochem Mol Biol 20:365–408CrossRef Weiner S, Lowenstam H (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. Crit Rev Biochem Mol Biol 20:365–408CrossRef
go back to reference Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRef Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRef
go back to reference Wilt FH (2002) Biomineralization of the spicules of sea urchin embryos. Zool Sci 19:253–261CrossRef Wilt FH (2002) Biomineralization of the spicules of sea urchin embryos. Zool Sci 19:253–261CrossRef
go back to reference Zhang G, Xu J (2013) From colloidal nanoparticles to a single crystal: new insights into the formation of nacre’s aragonite tablets. J Struct Biol 182:36–43CrossRef Zhang G, Xu J (2013) From colloidal nanoparticles to a single crystal: new insights into the formation of nacre’s aragonite tablets. J Struct Biol 182:36–43CrossRef
go back to reference Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRef Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRef
Metadata
Title
Nucleation and Growth from a Biomineralization Perspective
Authors
Giuseppe Falini
Simona Fermani
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45669-0_9