Skip to main content
Top
Published in: Journal of Scientific Computing 3/2015

01-03-2015

Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations

Authors: Weihua Deng, Minghua Chen, Eli Barkai

Published in: Journal of Scientific Computing | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Feynman–Kac equations are a type of partial differential equations describing the distribution of functionals of diffusive motion. The probability density function (PDF) of Brownian functionals satisfies the Feynman–Kac formula, being a Schrödinger equation in imaginary time. The functionals of non-Brownian motion, or anomalous diffusion, follow the fractional Feynman–Kac equation (Carmi et al. in J Stat Phys 141:1071–1092, 2010), where the fractional substantial derivative is involved. Based on recently developed discretized schemes for fractional substantial derivatives (Chen and Deng arXiv:​1310.​3086), this paper focuses on providing algorithms for numerically solving the forward and backward fractional Feynman–Kac equations; since the fractional substantial derivative is non-local time-space coupled operator, new challenges are introduced compared with the ordinary fractional derivative. Two ways (finite difference and finite element) of discretizing the space derivative are considered. For the backward fractional Feynman–Kac equation, the numerical stability and convergence of the algorithms with first order accuracy are theoretically discussed; and the optimal estimates are obtained. For all the provided schemes, including the first order and high order ones, of both forward and backward Feynman–Kac equations, extensive numerical experiments are performed to show their effectiveness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abate, J.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995)CrossRefMATH Abate, J.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995)CrossRefMATH
3.
go back to reference Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)CrossRef Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)CrossRef
4.
go back to reference Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132 (2000)CrossRefMathSciNet Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132 (2000)CrossRefMathSciNet
5.
go back to reference Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)CrossRef Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)CrossRef
6.
go back to reference Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)CrossRefMATHMathSciNet Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)CrossRefMATHMathSciNet
8.
go back to reference Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. (in press). arXiv:1304.7425. [math.NA] Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. (in press). arXiv:​1304.​7425. [math.NA]
9.
go back to reference Chen, M.H., Deng, W.H.: Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. (2014). doi:10.4208/cicp.120713.280214a Chen, M.H., Deng, W.H.: Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. (2014). doi:10.​4208/​cicp.​120713.​280214a
10.
go back to reference Chen, M.H., Deng, W.H., Wu, Y.J.: Superlinearly convergent algorithms for the two-dimensional space–time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)CrossRefMATHMathSciNet Chen, M.H., Deng, W.H., Wu, Y.J.: Superlinearly convergent algorithms for the two-dimensional space–time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)CrossRefMATHMathSciNet
11.
go back to reference Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximation for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)CrossRefMATHMathSciNet Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximation for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)CrossRefMATHMathSciNet
12.
go back to reference Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)CrossRefMathSciNet Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)CrossRefMathSciNet
13.
go back to reference Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part Differ. Equ. 22, 558–576 (2005)CrossRefMathSciNet Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part Differ. Equ. 22, 558–576 (2005)CrossRefMathSciNet
14.
go back to reference Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous dfffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)CrossRef Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous dfffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)CrossRef
15.
go back to reference Hu, J.W., Tang, H.M.: Numerical Methods for Differential Equations. Scientific Press, China (1999) Hu, J.W., Tang, H.M.: Numerical Methods for Differential Equations. Scientific Press, China (1999)
16.
go back to reference Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)CrossRefMATHMathSciNet Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)CrossRefMATHMathSciNet
17.
go back to reference Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)CrossRefMATH Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)CrossRefMATH
18.
go back to reference Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)CrossRefMATHMathSciNet Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)CrossRefMATHMathSciNet
19.
go back to reference Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh–Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)MathSciNet Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh–Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)MathSciNet
20.
go back to reference Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11, 1221–1232 (2013)CrossRef Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11, 1221–1232 (2013)CrossRef
21.
go back to reference Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89, 2076–2092 (2005) Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89, 2076–2092 (2005)
22.
23.
go back to reference Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)CrossRefMATHMathSciNet Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)CrossRefMATHMathSciNet
24.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMATHMathSciNet Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMATHMathSciNet
25.
go back to reference Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82, 3653 (1999)CrossRef Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82, 3653 (1999)CrossRef
26.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
27.
28.
go back to reference Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH
29.
go back to reference Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac Equation for Non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)CrossRefMathSciNet Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac Equation for Non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)CrossRefMathSciNet
30.
go back to reference Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time–space Riesz–Caputo fractional differential equations. Appl. Math. Comput. 227, 531–540 (2014)CrossRefMathSciNet Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time–space Riesz–Caputo fractional differential equations. Appl. Math. Comput. 227, 531–540 (2014)CrossRefMathSciNet
31.
go back to reference Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)CrossRefMATHMathSciNet Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)CrossRefMATHMathSciNet
32.
go back to reference Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, 2976–3000 (2013)CrossRefMathSciNet Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, 2976–3000 (2013)CrossRefMathSciNet
33.
go back to reference Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)CrossRefMATHMathSciNet Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)CrossRefMATHMathSciNet
Metadata
Title
Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations
Authors
Weihua Deng
Minghua Chen
Eli Barkai
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9873-6

Other articles of this Issue 3/2015

Journal of Scientific Computing 3/2015 Go to the issue

Premium Partner