Skip to main content
Top

2021 | OriginalPaper | Chapter

Numerical Analysis of Electromagnetic Fields

Authors : Javier Bilbao, Eugenio Bravo, Olatz Garcia, Carolina Rebollar, Concepcion Varela

Published in: Numerical Methods for Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Classically, the solution to contour problems in electromagnetism was based on analytical techniques, looking for closed solutions. The solution, whether computational or analytical, of electromagnetic problems is extremely important for analyzing the interactions of wave emitting and receiving devices among themselves and with their environment, including both inanimate dispersing objects and living beings. There are many applications in various areas: radio frequency antennas, radar, optics, wireless communications, imaging in bioengineering, nanotechnology and metamaterials, electrical substations, etc. Such analytical or computational solutions are particularly useful to increase productivity in all these well-established areas, to provide procedures to improve existing designs before actual implementations and to facilitate the design of new processes and devices. Typically, electromagnetism problems can be formulated using Maxwell equations. However, the Maxwell equations only admit an analytical solution for some dispersing or emitting objects with canonical geometric shapes, such as the sphere, the infinite plane, elemental antennas, etc. Numerical methods broaden the spectrum of known solutions which, while to be considered approximate, in many cases can be selected to what level of precision the calculated results describe the physical reality being analyzed. In recent decades, driven by the availability of increasingly powerful computers, the area of computational electromagnetics (CEM) has experienced a remarkable increment as an area of research. Mathematical formulations of physical electromagnetic problems produce systems of equations that can now be solved numerically by computers. Thanks to advances in computational technology and increasingly sophisticated mathematical algorithms of electromagnetic modeling, it is a reality to simulate radiation or scattering problems containing arbitrary and complex structures for which there is no analytical solution to the Maxwell equations. There are various methods of computational electromagnetism and various classifications. Depending on the geometric model used by their formulations to characterize the dispersers, they can be classified into three types: ray tracing, surface discretizations, and volume discretizations. Depending on the precision achieved in the results and the field of application, they are classified into full-wave and asymptotic methods, also called low and high-frequency methods. Methods based on volumetric discretizations, such as finite-difference time-domain (FDTD) and frequency domain finite-element method (FEM), have the advantages that they allow for easy modeling of non-homogeneous media, and their associated 3D mathematical formulations are relatively simple. However, they suffer from the fact that the resulting system of linear equations has a number of unknowns proportional to the simulated volume, so the computational demand grows very rapidly as the electrical dimensions considered in the simulation increase. The methods based on discretizations of surfaces present characteristics that make them computationally more efficient than the volumetric ones. The formulations used in surface methods are based on surface integral equations (SIE) which, unlike volumetric formulations, are mathematically more difficult to implement in a computational code, partly due to the various types of singularities of the Green function. Another disadvantage of this type of methods is the impossibility of simulating general non-homogeneous means, although they have the great advantage that they only require discretizing the interfaces, that is to say, the two-dimensional surfaces that delimit the dispersing objects. Among the surface methods, the method-of-moments (MoM) and its computational optimizations stand out, in exchange for introducing a controllable numerical error on the results of the pure MoM, known as fast multipole method (FMM) and multilevel fast multipole algorithm (MLFMA). The physical optics (PO) is also considered as a surface method based on SIEs since it is based on surface discretizations, although using approximations valid only for electrically large objects. The PO supports a correction method to include diffraction, called physical theory of diffraction (PTD), although this correction is only applicable to perfect electric conductors (PEC). In this chapter, we will analyze some of the numerical methods used in electromagnetism.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sadiku M (2018) Elements of electromagnetics, 7th edn. Oxford University Press Sadiku M (2018) Elements of electromagnetics, 7th edn. Oxford University Press
2.
go back to reference Christiansen D, Jurgen R, Fink D (1996) Electronics engineers handbook (standard handbook of electronics engineering), 4th edn. McGraw-Hill Education Christiansen D, Jurgen R, Fink D (1996) Electronics engineers handbook (standard handbook of electronics engineering), 4th edn. McGraw-Hill Education
3.
go back to reference Baro I, Bilbao J, Varela C (2007) Linear algebra (in Basque: Aljebra lineala). Ed. Centro de Publicaciones de la Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación de Bilbao, ISBN: 978-84-95809-31-5 Baro I, Bilbao J, Varela C (2007) Linear algebra (in Basque: Aljebra lineala). Ed. Centro de Publicaciones de la Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación de Bilbao, ISBN: 978-84-95809-31-5
4.
go back to reference Gibson WC (2014) The method of moments in electromagnetics, 2nd edn. Chapman & Hall/CRC Gibson WC (2014) The method of moments in electromagnetics, 2nd edn. Chapman & Hall/CRC
5.
go back to reference Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House
6.
go back to reference Kunz K, Luebbers R (1993) The finite difference time domain method for electromagnetics. CRC Press Kunz K, Luebbers R (1993) The finite difference time domain method for electromagnetics. CRC Press
7.
go back to reference Thomas JW (1995) Numerical partial differential equations: finite difference methods. Springer Verlag, Berlin, GermanyCrossRef Thomas JW (1995) Numerical partial differential equations: finite difference methods. Springer Verlag, Berlin, GermanyCrossRef
8.
go back to reference Kermani MH, Ramahi OM (2006) The complementary derivatives method: a second-order accurate interpolation scheme for non-uniform grid in FDTD simulation. IEEE Microw Wireless Compon Lett 16:60–62CrossRef Kermani MH, Ramahi OM (2006) The complementary derivatives method: a second-order accurate interpolation scheme for non-uniform grid in FDTD simulation. IEEE Microw Wireless Compon Lett 16:60–62CrossRef
9.
go back to reference Jin J (1993) The finite element method in electromagnetics. Wiley Jin J (1993) The finite element method in electromagnetics. Wiley
10.
go back to reference Volakis JL, Chatterjee A, Kempel LC (1998) Finite element method for electromagnetics. IEEE Press Volakis JL, Chatterjee A, Kempel LC (1998) Finite element method for electromagnetics. IEEE Press
11.
go back to reference Bathe KJ (1995) Finite element procedures, 2nd edn. Prentice Hall Bathe KJ (1995) Finite element procedures, 2nd edn. Prentice Hall
12.
go back to reference Polycarpou AC (2006) Introduction to the finite element method in electromagnetics. Synthesis Lect Comput Electromag 1(1):1–126 Polycarpou AC (2006) Introduction to the finite element method in electromagnetics. Synthesis Lect Comput Electromag 1(1):1–126
13.
go back to reference Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–43MathSciNetCrossRef Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–43MathSciNetCrossRef
14.
go back to reference Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–824CrossRef Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–824CrossRef
15.
go back to reference Bilbao J, Bravo E, García O, Varela C, Rodríguez M, González P (2015) Blade aerodynamic design and analysis as first step to achieve the expected power performance of a small wind turbine. Int J Tech Phys Prob Eng 3(7):42–46 Bilbao J, Bravo E, García O, Varela C, Rodríguez M, González P (2015) Blade aerodynamic design and analysis as first step to achieve the expected power performance of a small wind turbine. Int J Tech Phys Prob Eng 3(7):42–46
16.
go back to reference Przemieniecki JS (1968) Theory of matrix structural analysis. Mc GRaw-Hill, New YorkMATH Przemieniecki JS (1968) Theory of matrix structural analysis. Mc GRaw-Hill, New YorkMATH
17.
go back to reference Zienkiewicz OC, Holister GS (1965) Stress analysis. Wiley, London Zienkiewicz OC, Holister GS (1965) Stress analysis. Wiley, London
18.
go back to reference Zienkiewicz OC, Cheung YK (1967) The finite element method in structural and continuum mechanics. Mc Graw-Hill, LondonMATH Zienkiewicz OC, Cheung YK (1967) The finite element method in structural and continuum mechanics. Mc Graw-Hill, LondonMATH
19.
go back to reference Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier
20.
go back to reference Harrington RF (1993) Field computation by moment methods. IEEE Press. Series on Electromagnetic Waves, pp. 15–64 Harrington RF (1993) Field computation by moment methods. IEEE Press. Series on Electromagnetic Waves, pp. 15–64
22.
go back to reference Kouyoumjian RG, Pathak PH (1974) A uniform geometrical theory of diffraction for and edge in a perfectly conducting surface. Proc IEEE 62:1448–1461CrossRef Kouyoumjian RG, Pathak PH (1974) A uniform geometrical theory of diffraction for and edge in a perfectly conducting surface. Proc IEEE 62:1448–1461CrossRef
23.
go back to reference Keller J (1960) Backscattering from a finite cone. IRE Trans Antennas Propag 8(2) Keller J (1960) Backscattering from a finite cone. IRE Trans Antennas Propag 8(2)
25.
go back to reference Ufimtsev PY (2014) Fundamentals of the physical theory of diffraction, 2nd edn. Wiley Ufimtsev PY (2014) Fundamentals of the physical theory of diffraction, 2nd edn. Wiley
26.
go back to reference Akhiyarov VV, Borzov AB, Likhoedenko KP, Karakulin YV, Seregin GM, Suchkov VB (2018) Mathematical simulation of electromagnetic scattering field from perfectly conducting object with dielectric cover on the base of physical theory of diffraction. In: CSAE ‘18 proceedings of the 2nd international conference on computer science and application engineering, article No. 67, Hohhot, China, October 22–24 Akhiyarov VV, Borzov AB, Likhoedenko KP, Karakulin YV, Seregin GM, Suchkov VB (2018) Mathematical simulation of electromagnetic scattering field from perfectly conducting object with dielectric cover on the base of physical theory of diffraction. In: CSAE ‘18 proceedings of the 2nd international conference on computer science and application engineering, article No. 67, Hohhot, China, October 22–24
27.
go back to reference Ufimtsev PY (1957) Approximate computation of the diffraction of plane electromagnetic waves at certain metal bodies (i and ii). Sov Phys Tech 27:1708–1718 Ufimtsev PY (1957) Approximate computation of the diffraction of plane electromagnetic waves at certain metal bodies (i and ii). Sov Phys Tech 27:1708–1718
28.
go back to reference Michaeli A (1984) Equivalent edge currents for arbitrary aspects of observation. IEEE Trans Antennas Propag 23:252–258MathSciNetCrossRef Michaeli A (1984) Equivalent edge currents for arbitrary aspects of observation. IEEE Trans Antennas Propag 23:252–258MathSciNetCrossRef
29.
go back to reference Lee H, Koh IS (2018) Consideration of diffraction effect in iterative physical optics combining physical theory of diffraction for conducting body. In: 12th European conference on antennas and propagation (EuCAP 2018) Lee H, Koh IS (2018) Consideration of diffraction effect in iterative physical optics combining physical theory of diffraction for conducting body. In: 12th European conference on antennas and propagation (EuCAP 2018)
30.
go back to reference Balanis CA (1989) Advanced engineering electromagnetics. Wiley Balanis CA (1989) Advanced engineering electromagnetics. Wiley
31.
go back to reference Al-Azzawi A (2018) Physical optics: principles and practices. CRC Press Al-Azzawi A (2018) Physical optics: principles and practices. CRC Press
32.
go back to reference Canta SM, Kipp RA, Carpenter S, Petersson LER (2018) Range-Doppler radar signature prediction of wind turbine using SBR. In: 12th European conference on antennas and propagation (EuCAP 2018) Canta SM, Kipp RA, Carpenter S, Petersson LER (2018) Range-Doppler radar signature prediction of wind turbine using SBR. In: 12th European conference on antennas and propagation (EuCAP 2018)
33.
go back to reference Ghanmi H, Khenchaf A, Pouliguen P (2018) Radar cross section of modified target using gaussian beam methods: experimental validation. In: 2018 international conference on radar (RADAR) Ghanmi H, Khenchaf A, Pouliguen P (2018) Radar cross section of modified target using gaussian beam methods: experimental validation. In: 2018 international conference on radar (RADAR)
34.
go back to reference Ling SLH, Chou R (1989) Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans Antennas Propag 37:194–205CrossRef Ling SLH, Chou R (1989) Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans Antennas Propag 37:194–205CrossRef
35.
go back to reference Ling SLH, Chou R (1989) High-frequency RCS of open cavities with rectangular and circular cross sections. IEEE Trans Antennas Propag 37:648–652CrossRef Ling SLH, Chou R (1989) High-frequency RCS of open cavities with rectangular and circular cross sections. IEEE Trans Antennas Propag 37:648–652CrossRef
36.
go back to reference Yilmaz AE, Jin JM, Michielssen E (2004) Time domain adaptive integral method for surface integral equations. IEEE Trans Antennas Propag 52(10) Yilmaz AE, Jin JM, Michielssen E (2004) Time domain adaptive integral method for surface integral equations. IEEE Trans Antennas Propag 52(10)
37.
go back to reference Engheta N, Murphy WD, Rokhlin V, Vassiliou MS (1992) The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans Antennas Propag 40(6) Engheta N, Murphy WD, Rokhlin V, Vassiliou MS (1992) The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans Antennas Propag 40(6)
38.
go back to reference Song J, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45(10) Song J, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45(10)
39.
go back to reference Hasanov ER, Hajiyeva VM, Salimi Rikani A, Tabatabaei NM (2019) Radiation doped semiconductors with certain impurities. Int J Tech Phys Prob Eng (IJTPE) 11(2):13–17 Hasanov ER, Hajiyeva VM, Salimi Rikani A, Tabatabaei NM (2019) Radiation doped semiconductors with certain impurities. Int J Tech Phys Prob Eng (IJTPE) 11(2):13–17
40.
go back to reference Akbarli RS (201) Waves propagation in the fluid flowing in an elastic tube, considering viscoelastic friction of surrounding medium. Int J Tech Phys Propag Eng (IJTPE) 10(2):39–42 Akbarli RS (201) Waves propagation in the fluid flowing in an elastic tube, considering viscoelastic friction of surrounding medium. Int J Tech Phys Propag Eng (IJTPE) 10(2):39–42
41.
go back to reference Kim OS, Meincke P, Breinbjerg O (2004) Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions. Radio Sci 39:RS5003 Kim OS, Meincke P, Breinbjerg O (2004) Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions. Radio Sci 39:RS5003
42.
go back to reference Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J Sci Stat Comput 7(15):856–869CrossRef Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J Sci Stat Comput 7(15):856–869CrossRef
43.
go back to reference Medgyesi-Mitschang LN, Putnam JM, Gedera MB (1994) Generalized method of moments for three-dimensional penetrable scatterers. J Opt Soc Am A 11(4):1383–1398CrossRef Medgyesi-Mitschang LN, Putnam JM, Gedera MB (1994) Generalized method of moments for three-dimensional penetrable scatterers. J Opt Soc Am A 11(4):1383–1398CrossRef
44.
go back to reference Poggio AJ, Miller EK (1973) Integral equation solutions of three-dimensional scattering problems. In: Mittra R (edn) Computer techniques for electromagnetics. Pergamon Press, Oxford Poggio AJ, Miller EK (1973) Integral equation solutions of three-dimensional scattering problems. In: Mittra R (edn) Computer techniques for electromagnetics. Pergamon Press, Oxford
45.
go back to reference Ylä-Oijala P, Taskinen M, Järvenpää S (2005) Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods. Radio Sci 40(6):RS6002 Ylä-Oijala P, Taskinen M, Järvenpää S (2005) Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods. Radio Sci 40(6):RS6002
47.
go back to reference Chang Y, Harrington RF (1977) A surface formulation for characteristic modes of material bodies. IEEE Trans Antennas Propag 25:789–795CrossRef Chang Y, Harrington RF (1977) A surface formulation for characteristic modes of material bodies. IEEE Trans Antennas Propag 25:789–795CrossRef
48.
go back to reference Wu TK, Tsai LL (1977) Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci 12:709–718CrossRef Wu TK, Tsai LL (1977) Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci 12:709–718CrossRef
49.
go back to reference Ergül Ö, Gürel L (2008) Novel electromagnetic surface integral equations for highly accurate computations of dielectric bodies with arbitrarily low contrasts. J Comput Phys 227(23):9898–9912MathSciNetCrossRef Ergül Ö, Gürel L (2008) Novel electromagnetic surface integral equations for highly accurate computations of dielectric bodies with arbitrarily low contrasts. J Comput Phys 227(23):9898–9912MathSciNetCrossRef
50.
go back to reference Ylä-Oijala P, Taskinen M (2005) Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects. IEEE Trans Antennas Propag 53(3):1168–1173CrossRef Ylä-Oijala P, Taskinen M (2005) Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects. IEEE Trans Antennas Propag 53(3):1168–1173CrossRef
51.
go back to reference Ylä-Oijala P (2008) Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects. Prog Electromagn Res C 3:19–43CrossRef Ylä-Oijala P (2008) Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects. Prog Electromagn Res C 3:19–43CrossRef
52.
go back to reference Cui Z, Han Y, Xu Q, Li M (2010) Parallel MoM solution of JMCFIE for scattering by 3-D electrically large dielectric objects. Prog Electromagn Res M 12:217–228CrossRef Cui Z, Han Y, Xu Q, Li M (2010) Parallel MoM solution of JMCFIE for scattering by 3-D electrically large dielectric objects. Prog Electromagn Res M 12:217–228CrossRef
53.
go back to reference Taboada JM, Rivero J, Obelleiro F, Araujo MG, Landesa L (2011) Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J Opt Soc Am A 28(7):1341–1348CrossRef Taboada JM, Rivero J, Obelleiro F, Araujo MG, Landesa L (2011) Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J Opt Soc Am A 28(7):1341–1348CrossRef
54.
go back to reference Araujo MG, Taboada JM, Rivero J, Solís DM, Obelleiro F (2012) Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm. Opt Lett 37(3):416–418CrossRef Araujo MG, Taboada JM, Rivero J, Solís DM, Obelleiro F (2012) Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm. Opt Lett 37(3):416–418CrossRef
55.
go back to reference Ergül Ö, Gürel L (2008) Stabilization of integral-equation formulations for the accurate solution of scattering problems involving low-contrast dielectric objects. Trans Antennas Propag 56(3):799–805MathSciNetCrossRef Ergül Ö, Gürel L (2008) Stabilization of integral-equation formulations for the accurate solution of scattering problems involving low-contrast dielectric objects. Trans Antennas Propag 56(3):799–805MathSciNetCrossRef
56.
go back to reference Ergül Ö, Gürel L (2009) Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm. IEEE Trans Antennas Propag 57(1):176–187MathSciNetCrossRef Ergül Ö, Gürel L (2009) Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm. IEEE Trans Antennas Propag 57(1):176–187MathSciNetCrossRef
57.
go back to reference Rao SM, Wilton DR, Glisson AW (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418CrossRef Rao SM, Wilton DR, Glisson AW (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418CrossRef
58.
go back to reference Li X, Lei L, Chen Y, Jiang M, Nie Z, Hu J (2019) Efficient electromagnetic analysis for complex planar thin-layer composite objects by a hybrid method. IEEE Antennas Wireless Propag Lett 18(9) Li X, Lei L, Chen Y, Jiang M, Nie Z, Hu J (2019) Efficient electromagnetic analysis for complex planar thin-layer composite objects by a hybrid method. IEEE Antennas Wireless Propag Lett 18(9)
59.
go back to reference Uluisik C, Cakir G, Cakir M, Sevgi L (2008) Radar cross section (RCS) modeling and simulation, part 1: a tutorial review of definitions, strategies, and canonical examples. Antennas Propag Mag IEEE 50(1):115–126CrossRef Uluisik C, Cakir G, Cakir M, Sevgi L (2008) Radar cross section (RCS) modeling and simulation, part 1: a tutorial review of definitions, strategies, and canonical examples. Antennas Propag Mag IEEE 50(1):115–126CrossRef
60.
go back to reference Martínez-Lorenzo JA, Pino AG, Vega I, Arias M, Rubiños O (2005) ICARA: induced-current analysis of reflector antennas. Antennas Propag Mag IEEE 47(2):92–100CrossRef Martínez-Lorenzo JA, Pino AG, Vega I, Arias M, Rubiños O (2005) ICARA: induced-current analysis of reflector antennas. Antennas Propag Mag IEEE 47(2):92–100CrossRef
61.
go back to reference Meana JG, Martínez-Lorenzo JA, Las-Heras F, Rappaport C (2009) A PO MoM comparison for electrically large dielectric geometries. In: Antennas and propagation society international symposium, 2009. APSURSI ‘09, IEEE. 1–5 June 2009 Meana JG, Martínez-Lorenzo JA, Las-Heras F, Rappaport C (2009) A PO MoM comparison for electrically large dielectric geometries. In: Antennas and propagation society international symposium, 2009. APSURSI ‘09, IEEE. 1–5 June 2009
62.
go back to reference Meana JG, Martínez-Lorenzo JA, Las-Heras F, Rappaport C (2010) Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA). IEEE Trans Antennas Propag 58(11):3757–3761MathSciNetCrossRef Meana JG, Martínez-Lorenzo JA, Las-Heras F, Rappaport C (2010) Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA). IEEE Trans Antennas Propag 58(11):3757–3761MathSciNetCrossRef
63.
go back to reference Rengarajan SR, Gillespie ES (1988) Asymptotic approximations in radome analysis. IEEE Trans Antennas Propag 36(3):405–414CrossRef Rengarajan SR, Gillespie ES (1988) Asymptotic approximations in radome analysis. IEEE Trans Antennas Propag 36(3):405–414CrossRef
64.
go back to reference Hodges RE, Rahmat-Samii Y (1993) Evaluation of dielectric physical optics in electromagnetic scattering. In: Proceedings 1993 antennas and propagation society international symposium, USA Hodges RE, Rahmat-Samii Y (1993) Evaluation of dielectric physical optics in electromagnetic scattering. In: Proceedings 1993 antennas and propagation society international symposium, USA
65.
go back to reference Sáez de Adana F, Gutierrez O (2010) Practical applications of asymptotic techniques in electromagnetics. Artech House, 2010 Sáez de Adana F, Gutierrez O (2010) Practical applications of asymptotic techniques in electromagnetics. Artech House, 2010
66.
go back to reference Balanis CA (1997) Antenna theory: analysis and design. Wiley, New York Balanis CA (1997) Antenna theory: analysis and design. Wiley, New York
67.
go back to reference Arias-Acuña M, Rubiños O, Cuiñas I, Pino AG (2000) Electromagnetic scattering of reflector antennas by fast physical optics algorithms. Recent Res Dev Magn 1:43–63 Arias-Acuña M, Rubiños O, Cuiñas I, Pino AG (2000) Electromagnetic scattering of reflector antennas by fast physical optics algorithms. Recent Res Dev Magn 1:43–63
Metadata
Title
Numerical Analysis of Electromagnetic Fields
Authors
Javier Bilbao
Eugenio Bravo
Olatz Garcia
Carolina Rebollar
Concepcion Varela
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-62191-9_19