Skip to main content
Top

2019 | OriginalPaper | Chapter

Numerical Analysis of Transonic Buffet Control Using a Two-Dimensional Bump for a Supercritical Aerofoil

Authors : Zheng Yang, Hideaki Ogawa

Published in: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aerodynamic behaviour of transonic flow around a supercritical aerofoil is strongly influenced by shock-wave/boundary-layer interaction (SBLI) due to compressible and viscous effects. SBLI causes undesirable effects in various manners including flow instability, drag rise, and buffet, which crucially limit the flight envelop hence operation. In this paper, a numerical investigation is conducted for an OAT15A supercritical aerofoil under a typical buffet onset condition. Unsteady Reynolds-Averaged Navier-Stokes (URANS) equation is used to simulate the compressible, viscous flowfield. A two-dimensional (2D) surface bump based on preceding research on SBLI control is employed as a flow control device. It is placed on the suction side of the aerofoil relative to the shock position, with a fixed location of 27% of the chord length. A freestream condition of Mach 0.73 and a 3.5° angle of attack have been considered for the unsteady flowfield. It has been found that the trailing edge vortices within the separation bubble have considerable influence on self-sustained shock oscillation by scrutinising the flowfields in the presence/absence of bump control. The establishment of a λ-shock structure effectively restricts the motion of the front shock leg without incurring significant re-expansion generated by the moving rear shock leg. This subsequently suppresses flow separation at the trailing edge within an acceptable range, and attenuates the periodic lift fluctuation associated with the oscillating shock movement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Babinsky H, Ogawa H (2008) SBLI control for wings and inlets. Shock Waves 18(2):89CrossRef Babinsky H, Ogawa H (2008) SBLI control for wings and inlets. Shock Waves 18(2):89CrossRef
2.
go back to reference Barakos G, Drikakis D (2000) Numerical simulation of transonic buffet flows using various turbulence closures. Int J Heat Fluid Flow 21(5):620–626CrossRef Barakos G, Drikakis D (2000) Numerical simulation of transonic buffet flows using various turbulence closures. Int J Heat Fluid Flow 21(5):620–626CrossRef
3.
go back to reference Bruce P, Colliss S (2015) Review of research into shock control bumps. Shock Waves 25(5):451–471CrossRef Bruce P, Colliss S (2015) Review of research into shock control bumps. Shock Waves 25(5):451–471CrossRef
4.
go back to reference Brunet V et al (2005) A complete experimental and numerical study of the buffet phenomenon over the OAT15A airfoil. ONERA: Tire a Part (35):1–9 Brunet V et al (2005) A complete experimental and numerical study of the buffet phenomenon over the OAT15A airfoil. ONERA: Tire a Part (35):1–9
5.
go back to reference Bhamidipati KK et al (2015) Unstructured grid simulations of transonic shockwave-boundary layer interaction-induced oscillations. In: 22nd AIAA Computational Fluid Dynamics Conference Bhamidipati KK et al (2015) Unstructured grid simulations of transonic shockwave-boundary layer interaction-induced oscillations. In: 22nd AIAA Computational Fluid Dynamics Conference
6.
go back to reference Caruana D et al (2005) Buffet and buffeting control in transonic flow. Aerosp Sci Technol 9(7):605–616CrossRef Caruana D et al (2005) Buffet and buffeting control in transonic flow. Aerosp Sci Technol 9(7):605–616CrossRef
7.
go back to reference Crouch J et al (2007) Predicting the onset of flow unsteadiness based on global instability. J Comput Phys 224(2):924–940MathSciNetCrossRef Crouch J et al (2007) Predicting the onset of flow unsteadiness based on global instability. J Comput Phys 224(2):924–940MathSciNetCrossRef
8.
go back to reference Deck S (2005) Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J 43(7):1556–1566CrossRef Deck S (2005) Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J 43(7):1556–1566CrossRef
9.
go back to reference Iovnovich M, Raveh DE (2012) Reynolds-averaged Navier-Stokes study of the shock-buffet instability mechanism. AIAA J 50(4):880–890CrossRef Iovnovich M, Raveh DE (2012) Reynolds-averaged Navier-Stokes study of the shock-buffet instability mechanism. AIAA J 50(4):880–890CrossRef
10.
go back to reference Lee B (2001) Self-sustained shock oscillations on airfoils at transonic speeds. Prog Aerosp Sci 37(2):147–196CrossRef Lee B (2001) Self-sustained shock oscillations on airfoils at transonic speeds. Prog Aerosp Sci 37(2):147–196CrossRef
11.
go back to reference Ogawa H et al (2008) Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings. AIAA J 46(6):1442–1452CrossRef Ogawa H et al (2008) Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings. AIAA J 46(6):1442–1452CrossRef
12.
go back to reference Rahman MR et al (2015) Control of transonic shock wave oscillation over a supercritical airfoil. Open J Fluid Dyn 5(04):302CrossRef Rahman MR et al (2015) Control of transonic shock wave oscillation over a supercritical airfoil. Open J Fluid Dyn 5(04):302CrossRef
13.
go back to reference Rahman MR et al (2016) Effect of cavity on shock oscillation in transonic flow over RAE2822 supercritical airfoil. In: AIP Conference Proceedings. AIP Publishing Rahman MR et al (2016) Effect of cavity on shock oscillation in transonic flow over RAE2822 supercritical airfoil. In: AIP Conference Proceedings. AIP Publishing
14.
go back to reference Reneaux J et al (2005) A combined experimental and numerical investigation of the buffet phenomenon and its control through passive and active devices. ONERA: Tire a Part (103):1 Reneaux J et al (2005) A combined experimental and numerical investigation of the buffet phenomenon and its control through passive and active devices. ONERA: Tire a Part (103):1
15.
go back to reference Sartor F et al (2014) Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J 53(7):1980–1993CrossRef Sartor F et al (2014) Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J 53(7):1980–1993CrossRef
16.
go back to reference Smith A et al (2004) Shock wave/boundary-layer interaction control using streamwise slots in transonic flows. J Aircr 41(3):540–546CrossRef Smith A et al (2004) Shock wave/boundary-layer interaction control using streamwise slots in transonic flows. J Aircr 41(3):540–546CrossRef
17.
go back to reference Thiery M, Coustols E (2006) Numerical prediction of shock induced oscillations over a 2D airfoil: influence of turbulence modelling and test section walls. Int J Heat Fluid Flow 27(4):661–670CrossRef Thiery M, Coustols E (2006) Numerical prediction of shock induced oscillations over a 2D airfoil: influence of turbulence modelling and test section walls. Int J Heat Fluid Flow 27(4):661–670CrossRef
18.
go back to reference Tian Y et al (2011) Shock control bump parametric research on supercritical airfoil. Sci China Technol Sci 54(11):2935CrossRef Tian Y et al (2011) Shock control bump parametric research on supercritical airfoil. Sci China Technol Sci 54(11):2935CrossRef
19.
go back to reference Xiao Q et al (2006) Numerical study of transonic buffet on a supercritical airfoil. AIAA J 44(3):620–628CrossRef Xiao Q et al (2006) Numerical study of transonic buffet on a supercritical airfoil. AIAA J 44(3):620–628CrossRef
20.
go back to reference Yun T et al (2017) Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil. Chin J Aeronaut 30(5):1681–1696CrossRef Yun T et al (2017) Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil. Chin J Aeronaut 30(5):1681–1696CrossRef
Metadata
Title
Numerical Analysis of Transonic Buffet Control Using a Two-Dimensional Bump for a Supercritical Aerofoil
Authors
Zheng Yang
Hideaki Ogawa
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3305-7_67

Premium Partner